早教吧作业答案频道 -->数学-->
已知椭圆(a>0,b>0)的离心率e=,短轴的一个端点到右焦点的距离为√3.直线l:y=kx+m交椭圆于不同的两点A,B.1.求椭圆的方程2.若m=1时,|AB|=,求实数k的值.3.若OA⊥OB(O为坐标原点),求实数k的
题目详情
已知椭圆 (a>0,b>0)的离心率e= ,短轴的一个端点到右焦点的距离为√3.直线l:y=kx+m交椭圆于不同的两点A,B.
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
▼优质解答
答案和解析
已知椭圆x²/a²+y²/b²=1(a>0,b>0)的离心率e=√6/3 ,短轴的一个端点到右焦点的距离为√3.直线L:y=kx+m交椭圆于不同的两点A,B.
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
1、设椭圆的半焦距为c,
依题意:e=c/a=√6/3
短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义)
短轴的一个端点到右焦点的距离a=√3
解得c=√2
由b²=a²-c²=3-2=1
得b=1
∴所求椭圆方程为x²/3+y²=1
将y = kx +m代入椭圆方程
代入有x²+3(kx+m)²=3
整理得(1+ 3k² )x²+ 6kmx + 3m² −3 = 0
Δ = (6km)² − 4(1+3k² )(3m²−3) > 0
利用韦达定律
x1+x2=6km/(1+3k²)
x1×x2=(3m² −3)/(1+3k²)
利用弦长公式有|AB|=√(1+k²))|x2-x1|
|AB|²=(1+k² )(x2-x1)²
=(1+k²)[-6km/(3k²+1)]²-12(m²-1)/ (3k²+1)
=(1+k²)[36k²m²-12(m²-1) (3k²+1)]/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
当m=1时
|AB|²=36k²(1+k²)/ (3k²+1)²
|AB|=6k√(1+k²)/ (3k²+1)
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
1、设椭圆的半焦距为c,
依题意:e=c/a=√6/3
短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义)
短轴的一个端点到右焦点的距离a=√3
解得c=√2
由b²=a²-c²=3-2=1
得b=1
∴所求椭圆方程为x²/3+y²=1
将y = kx +m代入椭圆方程
代入有x²+3(kx+m)²=3
整理得(1+ 3k² )x²+ 6kmx + 3m² −3 = 0
Δ = (6km)² − 4(1+3k² )(3m²−3) > 0
利用韦达定律
x1+x2=6km/(1+3k²)
x1×x2=(3m² −3)/(1+3k²)
利用弦长公式有|AB|=√(1+k²))|x2-x1|
|AB|²=(1+k² )(x2-x1)²
=(1+k²)[-6km/(3k²+1)]²-12(m²-1)/ (3k²+1)
=(1+k²)[36k²m²-12(m²-1) (3k²+1)]/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
当m=1时
|AB|²=36k²(1+k²)/ (3k²+1)²
|AB|=6k√(1+k²)/ (3k²+1)
看了 已知椭圆(a>0,b>0)的...的网友还看了以下:
已知点F1、F2为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,P为右支上一点,点P 2020-04-08 …
小丽站在从左数起的第12个,从右数起的第8个,从前面数是第5个,从后面数是第15个.每行的人数同样 2020-06-14 …
如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那 2020-07-30 …
已知椭圆C:x2a2+y2b2=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3 2020-07-31 …
关于矩阵中元素的坐标已知有一个二维矩阵列数为x行数为y目标元素为以行为顺序(即按正常从左到右数)的第 2020-11-03 …
甲数的与乙数的相等,甲数的25%与丙数的20%相等.比较甲、乙、丙三个数的大小,下列结果正确的是哪一 2020-11-06 …
(2011•静安区模拟)某学习小组根据化学知识和右上表的数据,设计了下表中的实验,以验证酸性:盐酸> 2020-12-16 …
(2014•江西模拟)已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点 2020-12-17 …
已知点F1、F2为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,P为右支上一点,点P到 2020-12-31 …
找规律填数字0122233544423555716第一行的0在1和2中间的上方那里后面的插空儿!原来 2021-02-01 …