早教吧作业答案频道 -->数学-->
已知椭圆(a>0,b>0)的离心率e=,短轴的一个端点到右焦点的距离为√3.直线l:y=kx+m交椭圆于不同的两点A,B.1.求椭圆的方程2.若m=1时,|AB|=,求实数k的值.3.若OA⊥OB(O为坐标原点),求实数k的
题目详情
已知椭圆 (a>0,b>0)的离心率e= ,短轴的一个端点到右焦点的距离为√3.直线l:y=kx+m交椭圆于不同的两点A,B.
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
▼优质解答
答案和解析
已知椭圆x²/a²+y²/b²=1(a>0,b>0)的离心率e=√6/3 ,短轴的一个端点到右焦点的距离为√3.直线L:y=kx+m交椭圆于不同的两点A,B.
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
1、设椭圆的半焦距为c,
依题意:e=c/a=√6/3
短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义)
短轴的一个端点到右焦点的距离a=√3
解得c=√2
由b²=a²-c²=3-2=1
得b=1
∴所求椭圆方程为x²/3+y²=1
将y = kx +m代入椭圆方程
代入有x²+3(kx+m)²=3
整理得(1+ 3k² )x²+ 6kmx + 3m² −3 = 0
Δ = (6km)² − 4(1+3k² )(3m²−3) > 0
利用韦达定律
x1+x2=6km/(1+3k²)
x1×x2=(3m² −3)/(1+3k²)
利用弦长公式有|AB|=√(1+k²))|x2-x1|
|AB|²=(1+k² )(x2-x1)²
=(1+k²)[-6km/(3k²+1)]²-12(m²-1)/ (3k²+1)
=(1+k²)[36k²m²-12(m²-1) (3k²+1)]/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
当m=1时
|AB|²=36k²(1+k²)/ (3k²+1)²
|AB|=6k√(1+k²)/ (3k²+1)
1.求椭圆的方程
2.若m=1时,|AB|= ,求实数k的值.
3.若OA⊥OB(O为坐标原点),求实数k的值.
1、设椭圆的半焦距为c,
依题意:e=c/a=√6/3
短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义)
短轴的一个端点到右焦点的距离a=√3
解得c=√2
由b²=a²-c²=3-2=1
得b=1
∴所求椭圆方程为x²/3+y²=1
将y = kx +m代入椭圆方程
代入有x²+3(kx+m)²=3
整理得(1+ 3k² )x²+ 6kmx + 3m² −3 = 0
Δ = (6km)² − 4(1+3k² )(3m²−3) > 0
利用韦达定律
x1+x2=6km/(1+3k²)
x1×x2=(3m² −3)/(1+3k²)
利用弦长公式有|AB|=√(1+k²))|x2-x1|
|AB|²=(1+k² )(x2-x1)²
=(1+k²)[-6km/(3k²+1)]²-12(m²-1)/ (3k²+1)
=(1+k²)[36k²m²-12(m²-1) (3k²+1)]/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
=12(1+k²)(3k²-m²+1)/ (3k²+1)²
当m=1时
|AB|²=36k²(1+k²)/ (3k²+1)²
|AB|=6k√(1+k²)/ (3k²+1)
看了 已知椭圆(a>0,b>0)的...的网友还看了以下:
如图,椭圆E:x^2/100+y^2/25=1的上顶点为A,直线y=-4交椭圆E于点B,C(点B在 2020-05-16 …
有图,圆C经过坐标原点O并与坐标轴交于A,D两点圆C过坐标原点O并与坐标轴交于A,D两点已知角OB 2020-05-16 …
当两渐开线标准直齿轮传动的安装中心距大于标准中心距时那些发生变化?1传动比.2啮合角.3分度圆半径 2020-05-17 …
高考参数方程(1)经过点B(-2,π/4),垂直于极轴的直线的极坐标方程(2)经过点A(3,π/3 2020-06-10 …
在平面直角坐标系xOy中,平行于x轴且过点A(3√3,2)的入射光线L1被直线Ly=√3/3x反射 2020-07-04 …
如图,在平面直角坐标系中,一单位圆的圆心的初始位置在(0,1),此时P点位置是原点,圆在x轴上沿正 2020-07-26 …
求下列曲线的极坐标方程.(1)经过点A(3,π3),平行于极轴的直线;(2)经过点B(-2,π4) 2020-07-31 …
公切线已知圆O1与圆O2外切于点O已知圆O1与圆O2外切于点O,其半径之比为1:3,以直线O1O2 2020-07-31 …
母线长L的圆锥的侧面展开图的圆心角等于4TT/3,圆锥的体积为? 2020-08-02 …
已知圆心为C的圆经过点A(-3,0)和点B(1,0)两点,且圆心C在直线y=x+1上.(1)求圆C 2020-08-02 …