早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知椭圆x2a2+y2b2=1(a>b>0)的长、短轴端点分别为A、B,从椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1,AB∥OM.(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点,F1

题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的长、短轴端点分别为A、B,从椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1
AB
OM

(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.
▼优质解答
答案和解析
依题意,作图如图:
(1)设F1(-c,0),则xM=-c,yM=
b2
a

∴kOM=-
b2
ac

∵kAB=-
b
a
OM
AB

∴-
b2
ac
=-
b
a

∴b=c,故e=
c
a
=
2
2

(1)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,
∴r1+r2=2a,|F1F2|=2c.
cos θ=
r12+
r
2
2
-4c2
2r1r2
=
(r1+r2)2-2r1r2-4c2
2r1r2

=
2b2
r1r2
-1≥
2b2
(
r1+r2
2
)2
-1=0,
当且仅当r1=r2时,cos θ=0,
∴θ∈[0,
π
2
].
看了 已知椭圆x2a2+y2b2=...的网友还看了以下: