早教吧作业答案频道 -->数学-->
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段OB上一动点,以CD已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段用户名:蒋******|分类:
题目详情
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段 OB上一动点,以CD
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段
用户名:蒋****** |分类:初中数学 |浏览845次2014-01-16 17:48
OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,若S△OBC=8,AC=BC.(1)求抛物线的解析式;(2)求证:BF⊥AB;(3)求∠FBE的度数;(4)当D点沿x轴正方向移动到点B时,点E也随着移动,求点E所走过的路线长
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段
用户名:蒋****** |分类:初中数学 |浏览845次2014-01-16 17:48
OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,若S△OBC=8,AC=BC.(1)求抛物线的解析式;(2)求证:BF⊥AB;(3)求∠FBE的度数;(4)当D点沿x轴正方向移动到点B时,点E也随着移动,求点E所走过的路线长
▼优质解答
答案和解析
分析:(1)根据抛物线的对称性得到抛物线的对称轴为y轴,则b=0;然后利用方程与二次函数的关系求得点B、C的坐标,由S△OBC=8可以求得c的值;
(2)由抛物线y=-1/4 x^2+4交x轴于点A、B,当x=0,求出图象与y轴的交点坐标,以及y=0,求出图象与x轴的交点坐标,即可得出三角形的形状;首先证明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出答案;
(3)如图,连接BE,过点E作EM⊥x轴于点M.易证△ODC≌△DME,则DM=OC=4,OD=EM.易求BM=EM.则∠MBE=∠MEB=45°;由(2)知,BF⊥AB,故 ∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC的长度.
(1)如图,∵AC=BC,
∴该抛物线的对称轴是y轴,则b=0.
∴C(0,c),B(根号4c ,0).
∵S△OBC=8,
∴1/2OC•OB=1 /2×c×根号4c=8,解得c=4(c>0).
故该抛物线的解析式为y=-1/4x^2+4;
(2)证明:由(1)得到抛物线的解析式为y=-1/4x^2+4;
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
如图,又∵四边形CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
AC=BC;
∠ACD=∠BCF;
CD=CF;
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB;
(3)如图,连接BE,过点E作EM⊥x轴于点M.
易证△ODC≌△DME,则DM=OC=4,OD=EM.
∵OD=OB-BD=4-BD=DM-BD=BM,
∴BM=EM.
∵∠EMB=90°,
∴∠MBE=∠MEB=45°;
由(2)知,BF⊥AB,
∴∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC=4根号2
(2)由抛物线y=-1/4 x^2+4交x轴于点A、B,当x=0,求出图象与y轴的交点坐标,以及y=0,求出图象与x轴的交点坐标,即可得出三角形的形状;首先证明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出答案;
(3)如图,连接BE,过点E作EM⊥x轴于点M.易证△ODC≌△DME,则DM=OC=4,OD=EM.易求BM=EM.则∠MBE=∠MEB=45°;由(2)知,BF⊥AB,故 ∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC的长度.
(1)如图,∵AC=BC,
∴该抛物线的对称轴是y轴,则b=0.
∴C(0,c),B(根号4c ,0).
∵S△OBC=8,
∴1/2OC•OB=1 /2×c×根号4c=8,解得c=4(c>0).
故该抛物线的解析式为y=-1/4x^2+4;
(2)证明:由(1)得到抛物线的解析式为y=-1/4x^2+4;
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
如图,又∵四边形CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
AC=BC;
∠ACD=∠BCF;
CD=CF;
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB;
(3)如图,连接BE,过点E作EM⊥x轴于点M.
易证△ODC≌△DME,则DM=OC=4,OD=EM.
∵OD=OB-BD=4-BD=DM-BD=BM,
∴BM=EM.
∵∠EMB=90°,
∴∠MBE=∠MEB=45°;
由(2)知,BF⊥AB,
∴∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC=4根号2
看了 已知抛物线y=-1\4x²+...的网友还看了以下:
如图,抛物线与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线于点C;(1 2020-04-06 …
已知动点M的坐标满足方程:13√(x^2+y^2)=| 12x+5y-12|,则动点M的轨迹是:A 2020-05-13 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称 2020-05-16 …
斜抛运动角度将一物体从A抛出,过B点,有两个抛射角度可达到上述条件,从A向B看,角度为c,两个抛射 2020-06-20 …
如图所示,在离地高H处,小球A以速度v1水平抛出,与此同时,地面上小球B以速度v2竖直上抛,两球在 2020-06-24 …
若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=-2x2+4x+2与C2:u2 2020-06-30 …
我们称顶点相同的两条抛物线为同位抛物线,已知抛物线C1:y=2x2-4x+3.(1)下列抛物线中, 2020-07-09 …
对于抛物线y=x2与y=-x2,下列命题中错误的是()A.两条抛物线关于x轴对称B.两条抛物线关于 2020-07-26 …
计算二重积分∫∫D(3x^3+y)dxdy,其中D是两条抛物线y=x^2,y=4x^2和y=1围成 2020-07-31 …