早教吧作业答案频道 -->数学-->
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段OB上一动点,以CD已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段用户名:蒋******|分类:
题目详情
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段 OB上一动点,以CD
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段
用户名:蒋****** |分类:初中数学 |浏览845次2014-01-16 17:48
OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,若S△OBC=8,AC=BC.(1)求抛物线的解析式;(2)求证:BF⊥AB;(3)求∠FBE的度数;(4)当D点沿x轴正方向移动到点B时,点E也随着移动,求点E所走过的路线长
已知抛物线y=-1\4x²+bx+c与X轴交于A,B两点,与y轴交于点C,连结AC,BC,D是线段
用户名:蒋****** |分类:初中数学 |浏览845次2014-01-16 17:48
OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,若S△OBC=8,AC=BC.(1)求抛物线的解析式;(2)求证:BF⊥AB;(3)求∠FBE的度数;(4)当D点沿x轴正方向移动到点B时,点E也随着移动,求点E所走过的路线长
▼优质解答
答案和解析
分析:(1)根据抛物线的对称性得到抛物线的对称轴为y轴,则b=0;然后利用方程与二次函数的关系求得点B、C的坐标,由S△OBC=8可以求得c的值;
(2)由抛物线y=-1/4 x^2+4交x轴于点A、B,当x=0,求出图象与y轴的交点坐标,以及y=0,求出图象与x轴的交点坐标,即可得出三角形的形状;首先证明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出答案;
(3)如图,连接BE,过点E作EM⊥x轴于点M.易证△ODC≌△DME,则DM=OC=4,OD=EM.易求BM=EM.则∠MBE=∠MEB=45°;由(2)知,BF⊥AB,故 ∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC的长度.
(1)如图,∵AC=BC,
∴该抛物线的对称轴是y轴,则b=0.
∴C(0,c),B(根号4c ,0).
∵S△OBC=8,
∴1/2OC•OB=1 /2×c×根号4c=8,解得c=4(c>0).
故该抛物线的解析式为y=-1/4x^2+4;
(2)证明:由(1)得到抛物线的解析式为y=-1/4x^2+4;
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
如图,又∵四边形CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
AC=BC;
∠ACD=∠BCF;
CD=CF;
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB;
(3)如图,连接BE,过点E作EM⊥x轴于点M.
易证△ODC≌△DME,则DM=OC=4,OD=EM.
∵OD=OB-BD=4-BD=DM-BD=BM,
∴BM=EM.
∵∠EMB=90°,
∴∠MBE=∠MEB=45°;
由(2)知,BF⊥AB,
∴∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC=4根号2
(2)由抛物线y=-1/4 x^2+4交x轴于点A、B,当x=0,求出图象与y轴的交点坐标,以及y=0,求出图象与x轴的交点坐标,即可得出三角形的形状;首先证明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出答案;
(3)如图,连接BE,过点E作EM⊥x轴于点M.易证△ODC≌△DME,则DM=OC=4,OD=EM.易求BM=EM.则∠MBE=∠MEB=45°;由(2)知,BF⊥AB,故 ∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC的长度.
(1)如图,∵AC=BC,
∴该抛物线的对称轴是y轴,则b=0.
∴C(0,c),B(根号4c ,0).
∵S△OBC=8,
∴1/2OC•OB=1 /2×c×根号4c=8,解得c=4(c>0).
故该抛物线的解析式为y=-1/4x^2+4;
(2)证明:由(1)得到抛物线的解析式为y=-1/4x^2+4;
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
如图,又∵四边形CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
AC=BC;
∠ACD=∠BCF;
CD=CF;
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB;
(3)如图,连接BE,过点E作EM⊥x轴于点M.
易证△ODC≌△DME,则DM=OC=4,OD=EM.
∵OD=OB-BD=4-BD=DM-BD=BM,
∴BM=EM.
∵∠EMB=90°,
∴∠MBE=∠MEB=45°;
由(2)知,BF⊥AB,
∴∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,点E在定直线上,当点D沿x轴正方向移动到点B时,点E所走过的路程长等于BC=4根号2
看了 已知抛物线y=-1\4x²+...的网友还看了以下:
已知数轴上有点A.B.C,它们所表示的数分别是+4,-6,x(x,C为线段AB的中点,点D分线段A 2020-04-27 …
已知曲线C:x|x|a2-y|y|b2=1(a>b>0),下列叙述中正确的是()A.垂直于x轴的直 2020-05-15 …
已知fx=x^2+bx+c为偶函数,曲线y=fx过点(2.5),gx=(x+a)f(x)已知fx= 2020-05-15 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如 2020-05-16 …
1.求下列各式中的X(1)3:X=(X-5):2(2)4:5=(5-X):2X(3)(2X-5): 2020-05-21 …
如图,已知椭圆C:x∧2/a∧2+y∧2/b∧2=1的离心率为√3/2,左焦点F(-c,0)到直线 2020-06-21 …
(1/2)已知函数f(x)=ax^2+1(a>0),g(x)=x^3+bx.若曲线f(x)与曲线g 2020-06-27 …
关于比例选段的题,已知mn=ab,将它改写成比例式,使n放在第四比例项是已知a=5m,b=5cm, 2020-08-03 …
已知函数f(x)=ax+b/x+c(a>0)的图像在点,(1,f(1))处的切线方程为y=x-1.( 2020-12-08 …