早教吧作业答案频道 -->其他-->
过点M(-2,0),作直线l交双曲线x^2-y^2=1于A,B不同两点,已知向量OP=向量OA+向量OB①求点P的轨迹方程,并说明轨迹是什么曲线②是否存在这样的直线使|OP|=|AB|?若存在,求出l的方程;若不存在,说明理由
题目详情
过点M(-2,0),作直线l交双曲线x^2-y^2=1于A,B不同两点,已知向量OP=向量OA +向量OB①求点P的轨迹方程,
并说明轨迹是什么曲线②是否存在这样的直线使|OP|=|AB|?若存在,求出l的方程;若不存在,说明理由
并说明轨迹是什么曲线②是否存在这样的直线使|OP|=|AB|?若存在,求出l的方程;若不存在,说明理由
▼优质解答
答案和解析
因为M(-2,0),设L为Y=kX+2k,
联立X^2-Y^2=1,
整理得:(k^2-1)*X^2+4k^2+4k^2+1=0
所以,A的横坐标+B的横坐标=4k^2/(1-k^2)
又设P(X,Y)
因为向量OP=向量OA +向量OB
所以X=A的横坐标+B的横坐标=4k^2/(1-k^2)
Y=A的纵坐标+B的纵坐标=k(A的横坐标+B的纵坐标)+4k
所以,Y=k(X+4)
又由X=4k^2/(1-k^2)推出k^2=X/(X+4)
所以Y^2=X^2+4X.
联立X^2-Y^2=1,
整理得:(k^2-1)*X^2+4k^2+4k^2+1=0
所以,A的横坐标+B的横坐标=4k^2/(1-k^2)
又设P(X,Y)
因为向量OP=向量OA +向量OB
所以X=A的横坐标+B的横坐标=4k^2/(1-k^2)
Y=A的纵坐标+B的纵坐标=k(A的横坐标+B的纵坐标)+4k
所以,Y=k(X+4)
又由X=4k^2/(1-k^2)推出k^2=X/(X+4)
所以Y^2=X^2+4X.
看了 过点M(-2,0),作直线l...的网友还看了以下:
是否存在正整数a,b,使其满足根号a+根号b=根号275?若存在,请求出是否存在正整数a,b,使其 2020-05-15 …
是否存在正整数m,使(a+b)的4m-1次方能被(a+b)2m+7次方整除?若存在,求m的值,若不 2020-05-15 …
这题应该选d还是a,说明理由. 2020-05-16 …
-why was miss chen not pleased yesterday?-because 2020-05-16 …
若将代数式的中任意两个字母交换,代数式不变,则称这个式子为完全对称式,a+b+c就是完全对称式.下 2020-06-02 …
考试卷里有道题目:-Thebooksaresonice,whichonecanItake-Oh,y 2020-06-04 …
泰戈尔说:“真理之川从他的错误之沟渠中流过。”这说明A.真理与谬误相比较而存在B.真理与谬误相互区 2020-06-09 …
若a>0,b>0,且1a+1b=ab.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+ 2020-07-09 …
下列说法正确的是()A不存在最小的自然数,B不存在最小的正有理数,C存在最大的正有理数D存在最小的负 2020-11-21 …
a-b的相反值为什么是b-a?说明理由 2020-12-31 …