早教吧作业答案频道 -->数学-->
P=2K(Y1—KX1)Y1^2=2PX1Y–Y1=K(X–X1)求这三个式子联立消KP=2K(Y1—KX1)Y1^2=2PX1Y–Y1=K(X–X1)求这三个式子联立消K得到的最后式子,
题目详情
P=2K(Y1—KX1) Y1^2=2PX1 Y–Y1=K(X–X1) 求这三个式子联立消K
P=2K(Y1—KX1) Y1^2=2PX1 Y–Y1=K(X–X1) 求这三个式子联立消K得到的最后式子,
P=2K(Y1—KX1) Y1^2=2PX1 Y–Y1=K(X–X1) 求这三个式子联立消K得到的最后式子,
▼优质解答
答案和解析
郭敦顒回答:
p=2k(y1-kx1) (1),y1^2=2px1 (2),y–y1=k(x–x1) (3),
(1)/(3)得p/(y–y1)=2(y1-kx1)/ (x–x1),
p(x–x1)/ (y–y1)=2y1-2kx1,
2kx1=2y1-p(x–x1)/ (y–y1),
∴k=[2y1-p(x–x1)/ (y–y1)]/2x1,(4)
由(3)得,k= (y–y1)/(x–x1) (5)
∴[2y1-p(x–x1)/ (y–y1)]/2x1=(y–y1)/(x–x1),(6)
y1^2=2px1 (2)
由(2),p= y1^2/2x,代入(6)得,
[2y1-(y1^2/2x)(x–x1)/(y–y1)]/2x1=(y–y1)/(x–x1).
p=2k(y1-kx1) (1),y1^2=2px1 (2),y–y1=k(x–x1) (3),
(1)/(3)得p/(y–y1)=2(y1-kx1)/ (x–x1),
p(x–x1)/ (y–y1)=2y1-2kx1,
2kx1=2y1-p(x–x1)/ (y–y1),
∴k=[2y1-p(x–x1)/ (y–y1)]/2x1,(4)
由(3)得,k= (y–y1)/(x–x1) (5)
∴[2y1-p(x–x1)/ (y–y1)]/2x1=(y–y1)/(x–x1),(6)
y1^2=2px1 (2)
由(2),p= y1^2/2x,代入(6)得,
[2y1-(y1^2/2x)(x–x1)/(y–y1)]/2x1=(y–y1)/(x–x1).
看了 P=2K(Y1—KX1)Y1...的网友还看了以下:
化简[x^3(y^2-z^2)+y^3(z^2-x^2)+z^3(x^2-y^2)]/[x^3(y 2020-06-03 …
若在右半平面x>0上的向量A(x,y)={2xy(x^4+y^2)^λ,-x^2(x^4+y^2) 2020-06-27 …
已知X^2+Y^2=1,下列结论中正确的是1.曲线X^4+Y^2=1关于X轴对称2.曲线X^4+Y 2020-07-15 …
x(y+z-x)=39-2(x*x)1.解方程组y(z+x-y)=52-2(y*y)z(x+y-z) 2020-10-30 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
由(x^2+y^2+z^2)*(x+y+z)=x^3+y^3+z^3+(x+y)z^2+(y+z)x 2020-11-01 …
设二维随机变量(x.y)的联合密度函数为f(x.y)=|cx^2y0≤X≤20≤y≤2|0其他求常数 2020-11-13 …
数学题题题题题题题i题题题(x^3+xy^2+1)/(x^3+xy^2-x^2y-y^3)×(x^2 2020-11-20 …
当x=0,y=1时,x^2-2xy+y^2与(x-y)^2的值相同吗?当x=-1,y=-2时呢?否无 2020-12-31 …