早教吧作业答案频道 -->数学-->
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
题目详情
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.

(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
▼优质解答
答案和解析
(1)证明:∵AD为直径,AD⊥BC,
∴由垂径定理得:
=
∴根据圆心角、弧、弦之间的关系得:BD=CD.

(2) B,E,C三点在以D为圆心,以DB为半径的圆上.
理由:由(1)知:
=
,
∴∠1=∠2,
又∵∠2=∠3,
∴∠1=∠3,
∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,
∵BE是∠ABC的平分线,
∴∠4=∠5,
∴∠DBE=∠DEB,
∴DB=DE.
由(1)知:BD=CD
∴DB=DE=DC.
∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)
∴由垂径定理得:
![]() |
BD |
![]() |
CD |
∴根据圆心角、弧、弦之间的关系得:BD=CD.

(2) B,E,C三点在以D为圆心,以DB为半径的圆上.
理由:由(1)知:
![]() |
BD |
![]() |
CD |
∴∠1=∠2,
又∵∠2=∠3,
∴∠1=∠3,
∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,
∵BE是∠ABC的平分线,
∴∠4=∠5,
∴∠DBE=∠DEB,
∴DB=DE.
由(1)知:BD=CD
∴DB=DE=DC.
∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)
看了 如图,AD为△ABC外接圆的...的网友还看了以下:
集合A=﹛x|x=3n+1,n∈Z﹜,B=﹛x|x=3n+2,n∈Z﹜,C=﹛x|x=6n+3,n 2020-04-25 …
已知a,b,c是有理数,且a+b+c=0,abc(乘积)是负数,则b+c|a|+a+c|b|+a+ 2020-05-13 …
权利要求书撰写与保护范围的认定一个设计,特征有:A,B,C,D,E其中,A,B,C是重要设计点,一 2020-05-17 …
关于自反性若A={a,b,c,d,e},则A上的关系R={(a,a),(c,c)}是自反的吗?或是 2020-06-03 …
已知二面角α-l-β的大小为50°,b、c是两条异面直线,则下面的四个条件中,一定能使b和c所成的 2020-06-27 …
圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变 2020-07-25 …
线段的比例中项c是线段a、b的比例中项,a=4,b=16,则c=题目中没有说c是线段,那么c是不是 2020-07-30 …
设a.b.c.都是正数,且有a^2+b^2-c^2+2ab=0,那么分别以a.b.c为长度的三条设 2020-07-30 …
C/C++谁做了好事一个同学做了件好事,没有留名。A说:不是我。B说:是C。C说:是D。D说:C胡说 2020-11-04 …
1、aA(g)+bB(g)=(可逆号)cC(g)+dD(g)K=[C]c[D]d/[A]a[B]b化 2020-12-15 …