早教吧作业答案频道 -->数学-->
设函数f(x)=根号3/2-根号3sin^2wx-sinwxcoswx(w>0)且y=f(x)的图象的一个对称中心到最近的对称轴的距离为π/4为什么可以得到周期是T=π呢!
题目详情
设函数f(x)=根号3/2-根号3sin^2wx-sinwxcoswx(w>0)且y=f(x)的图象的一个对称中心到最近的对称轴的距离为π/4 为什么可以得到周期是T=π呢!
▼优质解答
答案和解析
题目好像写错了——-√3sin2ωx 应该是 -√3sin^2ωx,是吧?
(1)f(x)= √3/2-√3sin^2ωx-1/2*sin2ωx
= √3/2-√3/2*(1-cos2ωx)-1/2*sin2ωx
= √3/2*cos2ωx-1/2*sin2ωx
= -sin(2ωx-π/3)
因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为π/4 ,所以T=π
又ω>0,所以2π/2ω =4×π/4 ,解得ω=1
(2)求f(x)在区间[π,3π/2]上的最大值和最小值.
由(1)可知,f(x) = -sin(2x-π/3)
当π≤x≤3π/2 时,5π/3 ≤2x-π/3 ≤8π/3,
所以 -√3/2 ≤sin(2x-π/3)≤1
因此,-1≤f(x)≤√3/2,
所以f(x)在区间[π,3π/2]上的最大值和最小值分别为:√3/2 ,-1
打字不易,如满意,望采纳.
(1)f(x)= √3/2-√3sin^2ωx-1/2*sin2ωx
= √3/2-√3/2*(1-cos2ωx)-1/2*sin2ωx
= √3/2*cos2ωx-1/2*sin2ωx
= -sin(2ωx-π/3)
因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为π/4 ,所以T=π
又ω>0,所以2π/2ω =4×π/4 ,解得ω=1
(2)求f(x)在区间[π,3π/2]上的最大值和最小值.
由(1)可知,f(x) = -sin(2x-π/3)
当π≤x≤3π/2 时,5π/3 ≤2x-π/3 ≤8π/3,
所以 -√3/2 ≤sin(2x-π/3)≤1
因此,-1≤f(x)≤√3/2,
所以f(x)在区间[π,3π/2]上的最大值和最小值分别为:√3/2 ,-1
打字不易,如满意,望采纳.
看了 设函数f(x)=根号3/2-...的网友还看了以下:
已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1) 2020-05-19 …
已知f(x)是二次函数,不等式f(x)<0的解集是{x丨0<x<5},且f(x)在区间[-1,4] 2020-05-22 …
1已知圆C的圆心再直线Y=2X上,圆C截Y轴所得的玄长为6.且与X轴相切,试求圆C的方程.2求过原 2020-07-02 …
设定义在R上的函数f(x)=a4x^2+a3x^3+a2x^2+a1x+a0的图像关于原点对称,且 2020-07-09 …
设函数f(x)=根号3*cos^2*wx+sinwxcoswx+a(其中w>0,阿尔法属于R),且 2020-07-13 …
设函数f(x)=根号3*cos^2*wx+sinwxcoswx+a(其中w>0,阿尔法属于R),且 2020-07-13 …
设f(x),g(x)在(a,b)内可导,g(x)≠0且f(x)g'(x)=f'(x)g(x)(∀x 2020-07-16 …
已知f(x)在x=0的某个邻域内连续,且limx->0f(x)/1-cosx=2,则在x=0处f( 2020-07-31 …
设x>0,y>0,且8/x+2/y=1,求x+y的最小值下面是我的解法,请问是否正确,如果不对,又是 2020-10-31 …
已知函数f(x)=x^2+1,且g(x)=f[f(x)],G(x)=g(x)-af(x)已知函数f( 2020-12-08 …