早教吧作业答案频道 -->数学-->
设n阶方阵A满足A^3=2E,且B=A^2+2A-2E,证明B是可逆矩阵,并求B^-1
题目详情
设n阶方阵A满足A^3=2E,且B=A^2+2A-2E,证明 B是可逆矩阵 ,并求B^-1
▼优质解答
答案和解析
设f(x) = x²+2x-2, g(x) = x³-2.
先求多项式u(x), v(x)使u(x)f(x)+v(x)g(x) = 1.
带余除法g(x) = (x-2)f(x)+6(x-1), f(x) = (x+3)(x-1)+1.
有6 = 6f(x)-(x+3)(g(x)-(x-2)f(x)) = (x²+x)f(x)-(x+3)g(x).
于是(x²+x)/6·f(x)-(x+3)/6·g(x) = 1.
将x = A代入上式, 由f(A) = B, g(A) = 0, 即得(A²+A)/6·B = E.
因此B可逆, 且B^(-1) = (A²+A)/6.
先求多项式u(x), v(x)使u(x)f(x)+v(x)g(x) = 1.
带余除法g(x) = (x-2)f(x)+6(x-1), f(x) = (x+3)(x-1)+1.
有6 = 6f(x)-(x+3)(g(x)-(x-2)f(x)) = (x²+x)f(x)-(x+3)g(x).
于是(x²+x)/6·f(x)-(x+3)/6·g(x) = 1.
将x = A代入上式, 由f(A) = B, g(A) = 0, 即得(A²+A)/6·B = E.
因此B可逆, 且B^(-1) = (A²+A)/6.
看了 设n阶方阵A满足A^3=2E...的网友还看了以下:
设A=[2,1,-2;5,2,0;3,a,4],B是3阶非零矩阵,且AB=0,则a=解析上说因为A 2020-04-05 …
问几个c问题1,设x=2.5,y=4.7,a=7,则x+a%3*(int)(x+y)%2/4=2, 2020-04-08 …
设A为阶方阵,则下列的矩阵为对称矩阵的是().(A)A-A^T(B)CAC^T(C为任意阶方阵)( 2020-05-14 …
设A为n(n>=2)阶方阵,证明当r(A)=n时,r(A*)=n当r(A)=2)阶方阵,证明当r( 2020-05-14 …
(设A*为阶方阵的伴随矩阵且可逆,则结论正确的是()A(A*)*=lAl^(n-1)AB(A*)* 2020-06-12 …
设a和b是一个群G的两个元且ab=ba,又设a的阶|a|=m,b的阶|b|=n,并且(m,n)=1 2020-06-18 …
设A=2-2-4-1341-2-3,问是否存在非单位的3阶矩阵B使得AB=A?若存在,求出所有这样 2020-06-18 …
学数学的烦恼设G是一个2n阶有限交换群,其中n是一个奇数.证明:G有且只有一个2阶元素.证:依题意, 2020-11-03 …
设A是阶矩阵,且满足A^3=2E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1当A^3=6 2020-11-03 …
帮帮忙吧近世代数2设a和b是一个群的两个元且ab=ba,又设a的阶|a|=m,b的阶|b|=n,并且 2020-11-28 …