早教吧作业答案频道 -->数学-->
设n阶方阵A满足A^3=2E,且B=A^2+2A-2E,证明B是可逆矩阵,并求B^-1
题目详情
设n阶方阵A满足A^3=2E,且B=A^2+2A-2E,证明 B是可逆矩阵 ,并求B^-1
▼优质解答
答案和解析
设f(x) = x²+2x-2, g(x) = x³-2.
先求多项式u(x), v(x)使u(x)f(x)+v(x)g(x) = 1.
带余除法g(x) = (x-2)f(x)+6(x-1), f(x) = (x+3)(x-1)+1.
有6 = 6f(x)-(x+3)(g(x)-(x-2)f(x)) = (x²+x)f(x)-(x+3)g(x).
于是(x²+x)/6·f(x)-(x+3)/6·g(x) = 1.
将x = A代入上式, 由f(A) = B, g(A) = 0, 即得(A²+A)/6·B = E.
因此B可逆, 且B^(-1) = (A²+A)/6.
先求多项式u(x), v(x)使u(x)f(x)+v(x)g(x) = 1.
带余除法g(x) = (x-2)f(x)+6(x-1), f(x) = (x+3)(x-1)+1.
有6 = 6f(x)-(x+3)(g(x)-(x-2)f(x)) = (x²+x)f(x)-(x+3)g(x).
于是(x²+x)/6·f(x)-(x+3)/6·g(x) = 1.
将x = A代入上式, 由f(A) = B, g(A) = 0, 即得(A²+A)/6·B = E.
因此B可逆, 且B^(-1) = (A²+A)/6.
看了 设n阶方阵A满足A^3=2E...的网友还看了以下:
设n阶方阵A满足(A+E)3=0,证明矩阵A可逆,并写出A逆矩阵的表达式. 2020-04-05 …
设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.帮下忙啊,呵呵 2020-04-05 …
关于矩阵的问题希望有人帮我证明一下下列两个题:1,证:矩阵A的伴随矩阵=|A|的n-1次方2,已知 2020-04-13 …
如何证明矩阵a符合这个特征方程p(a)2.这个矩阵的三个特征方程分别是什么3如何用A和A如何证明矩 2020-04-26 …
设A,B分别为m,n阶可逆矩阵,B为m*n阶矩阵,证明矩阵AB0C可逆,并求逆 2020-05-14 …
定义在复数域上的N次方阵,满足A2+2A-3I=0,证明矩阵A可对角化,并求其相似对角阵 2020-06-16 …
一道高等代数关于迹Tr的问题(1)证明,若一复方阵的所有特征值全为0,则A为幂零矩阵;(2)证明对 2020-06-19 …
1.设A是3阶实对称矩阵,若A^2=0,证明A=0问一下用相似对角化怎么证?2.若证矩阵为零,让其 2020-06-22 …
线性代数,瑞利原理如果B为正定矩阵,利用瑞利原理证明:矩阵A+B之最小特征值大于矩阵A的最小特征值 2020-07-13 …
证明矩阵可逆设A=0BC0其中B是n阶可逆矩阵,C是m阶可逆矩阵,证明A可逆,并求出A逆.我们还没学 2020-11-03 …