早教吧作业答案频道 -->数学-->
如图,⊙O中,AB是直径,BC是弦,弦ED⊥AB与点F,交BC于点G,延长ED到点P,使得PC=PG.(1)求证:直线PC与⊙O相切;(2)当点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点试探究CG、BF
题目详情
如图,⊙O中,AB是直径,BC是弦,弦ED⊥AB与点F,交BC于点G,延长ED到点P,使得PC=PG.(1)求证:直线PC与⊙O相切;
(2)当点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点试探究CG、BF、BO三者之间的数量关系,并说明理由.
▼优质解答
答案和解析
(1)证明:连接OC,
∵OB=OC,
∴∠OBC=∠OCB,
∵PC=PG,
∴∠PGC=∠PCG,
∵∠PGC=∠BGF,
∴∠BGF=∠PCG,
∵ED⊥AB,
∴∠OBC+∠BGF=90°,
∴∠PCG+∠BCF=90°,即∠FCP=90°,则OF⊥PC,
∴直线PC是圆的切线;
(2)结论:CG2=BF•BO.
证明:连接OG,
则OG⊥BC,
∴∠OCP=∠BFG=90°,
∵∠B=∠B,
∴△OBG∽△GBF,
∴
=
,
∴BG2=OB•BF,
又∵BG=CG,
∴CG2=OB•BF.
(1)证明:连接OC,∵OB=OC,
∴∠OBC=∠OCB,
∵PC=PG,
∴∠PGC=∠PCG,
∵∠PGC=∠BGF,
∴∠BGF=∠PCG,
∵ED⊥AB,
∴∠OBC+∠BGF=90°,
∴∠PCG+∠BCF=90°,即∠FCP=90°,则OF⊥PC,
∴直线PC是圆的切线;
(2)结论:CG2=BF•BO.
证明:连接OG,
则OG⊥BC,
∴∠OCP=∠BFG=90°,
∵∠B=∠B,
∴△OBG∽△GBF,
∴
| OB |
| BG |
| BG |
| BF |
∴BG2=OB•BF,
又∵BG=CG,
∴CG2=OB•BF.
看了 如图,⊙O中,AB是直径,B...的网友还看了以下:
椭圆x2/3+y2/2=1内有一点P(1,1),一直线过点P与椭圆相交于P1、P2两点,弦P1P2 2020-04-06 …
如图所示在矩形abcd中ab=4bc=4倍的根3点e是折线段adc上的一个动点(点e与a不重合)点 2020-06-10 …
矩形ABCD中,AB=4,BC=4根3,点E是折线段A-D-C上的一个动点,点P是点A关于BE的对 2020-06-10 …
关于抛物线若A,B是抛物线y²=4x上的不同两两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于 2020-06-14 …
已知点p(3,2)是椭圆x^2/25+y^2/16=1内的一点1,求以p为中点的弦所在的直线L的方 2020-06-21 …
如图所示,矩形ABCD中,AB=4,BC=43,点E是折线段A-D-C上的一个动点(点E与点A不重 2020-07-15 …
如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A-D-C上的一个动点(点E与点A不重合) 2020-07-25 …
如图所示,矩形ABCD中,AB=4,BC=43,点E是折线段A-D-C上的一个动点(点E与点A不重 2020-07-30 …
如图,已知点M、N分别是△ABC的边BC、AC的中点,点P是点A关于点M的对称点,点Q是点B关于点 2020-08-01 …
己知椭圆C:的左、右焦点为、,离心率为。直线:与轴、轴分别交于点A、B,M是直线与椭圆C的一个公共点 2021-01-12 …