早教吧作业答案频道 -->数学-->
已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.
题目详情
已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.
(1)点P在x轴上;
(2)点P在y轴上;
(3)点Q的坐标为(1,5),直线PQ∥y轴;
(4)点P到x轴、y轴的距离相等.
(1)点P在x轴上;
(2)点P在y轴上;
(3)点Q的坐标为(1,5),直线PQ∥y轴;
(4)点P到x轴、y轴的距离相等.
▼优质解答
答案和解析
(1)∵点P(a-2,2a+8),在x轴上,
∴2a+8=0,
解得:a=-4,
故a-2=-4-2=-6,
则P(-6,0);
(2))∵点P(a-2,2a+8),在y轴上,
∴a-2=0,
解得:a=2,
故2a+8=2×2+8=12,
则P(0,12);
(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,
∴a-2=1,
解得:a=3,
故2a+8=14,
则P(1,14);
(4)∵点P到x轴、y轴的距离相等,
∴a-2=2a+8或a-2+2a+8=0,
解得:a1=-10,a2=-2,
故当a=-10则:a-2=-12,2a+8=-12,
则P(-12,-12);
故当a=-2则:a-2=-4,2a+8=4,
则P(-4,4).
综上所述:P(-12,-12),(-4,4).
∴2a+8=0,
解得:a=-4,
故a-2=-4-2=-6,
则P(-6,0);
(2))∵点P(a-2,2a+8),在y轴上,
∴a-2=0,
解得:a=2,
故2a+8=2×2+8=12,
则P(0,12);
(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,
∴a-2=1,
解得:a=3,
故2a+8=14,
则P(1,14);
(4)∵点P到x轴、y轴的距离相等,
∴a-2=2a+8或a-2+2a+8=0,
解得:a1=-10,a2=-2,
故当a=-10则:a-2=-12,2a+8=-12,
则P(-12,-12);
故当a=-2则:a-2=-4,2a+8=4,
则P(-4,4).
综上所述:P(-12,-12),(-4,4).
看了 已知点P(a-2,2a+8)...的网友还看了以下:
已知点P(x,y)是第一象限内的点,且在直线y=-x+8上,已知点P(x,y)是第一象限...已知 2020-05-14 …
已知直线y=kx+b过点A(-1,5),且平行于直线y=-x 点B(m,-5)在这条直线上,O为坐 2020-05-16 …
1.已知y/x=3,求x+y/x-y2.已知X=根号3+1,y=根号3-1,求XX-YY/XXY+ 2020-06-07 …
已知y是x的二次函数,其图像以原点为顶点且过点(0,1),Y是X的反比例函数……已知y是x的二次函 2020-06-27 …
y=x³点x=0求指定点处的导数 2020-07-18 …
已知点集A={(x,y)|(x-3)^2+(y-4)^2≤(5/2)^2}B={(x,y)|(x- 2020-07-30 …
已知椭圆C1:x2/a2+y2/b2=1(a>b>0)的离心率为3分之根号3,直线l:y=x+2已 2020-08-01 …
已知,A(2.0),B(0.2)所以斜率为k=-1为什么当用点斜式和两点式求直线方程时会有两个.两 2020-08-01 …
①已知点P(X,Y),是圆X²+Y²=1任意一点,求U=(X+2)/(y+2)的取值范围.②若实数X 2021-01-12 …
已知椭圆C1:x2/a2+y2/b2=1(a>b>0)的离心率为3分之根号3,直线l:y=x+2已知 2021-01-13 …