早教吧作业答案频道 -->数学-->
设f(x)满足f''(x)+f'(x)^2=x,且f'(0)=0,则点(0,f(0))必为拐点.
题目详情
设f(x)满足f''(x)+【f'(x)】^2=x,且f'(0)=0,则点(0,f(0))必为拐点.
▼优质解答
答案和解析
将x=0代入f''(x)+【f'(x)】^2=x
解得f''(0)=0
下面说明f"(x)在x=0两边是异号的
对等式f''(x)+【f'(x)】^2=x取极限x→0
得到limf"(x)=0
那么limf'(x)/x=limf"(x)=0 (x→0)
这说明(x→0)时f'(x)是比x更高阶的无穷小
当x<0时f''(x)+【f'(x)】^2=x右边是小于零的,左边【f'(x)】^2是大于零的,因此f''(x)小于零
当x>0时,等式右边是大于零的,而等式左边【f'(x)】^2是比x^2更高阶的无穷小,因此可以忽略不计,因此f''(x)大于零
综上所述f''(0)=0且在x=0两边异号,因此点(0,f(0))为拐点
解得f''(0)=0
下面说明f"(x)在x=0两边是异号的
对等式f''(x)+【f'(x)】^2=x取极限x→0
得到limf"(x)=0
那么limf'(x)/x=limf"(x)=0 (x→0)
这说明(x→0)时f'(x)是比x更高阶的无穷小
当x<0时f''(x)+【f'(x)】^2=x右边是小于零的,左边【f'(x)】^2是大于零的,因此f''(x)小于零
当x>0时,等式右边是大于零的,而等式左边【f'(x)】^2是比x^2更高阶的无穷小,因此可以忽略不计,因此f''(x)大于零
综上所述f''(0)=0且在x=0两边异号,因此点(0,f(0))为拐点
看了 设f(x)满足f''(x)+...的网友还看了以下:
(1)幂函数y=x^-2/3的定义域?(2)若函数y=f(x)的反函数图象过点(1,5),则函数y 2020-05-13 …
已知y=f(x)在点x0处可导,且当h趋于0时limh/[f(x0-4h)-f(x0)]=1/4, 2020-06-18 …
证明罗必达法则1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x) 2020-06-19 …
设f(x)存在二阶导数,下列结论正确的是A若f(x)只有两个零点,则f'(x)必定只有一个零点B若 2020-07-30 …
高数间断点问题设f(x)在R上连续,且f(x)不等于0,g(x)在R上有定义,且有间断点,则下列陈 2020-07-30 …
设函数f(x)在(-∞,+∞)内有定义,且x0≠0是函数f(x)的极大值点,则()A—x0必为—f 2020-07-31 …
如果X=X0是函数F(X)的驻点,则x=x0是函数f(x)的极值点的()A必要但非充分条件,B充分 2020-07-31 …
a.若Xo为f(x)的极点,则必有f'(Xo)=0b.若f'(Xo)=0,则Xo必为f(x)的极值 2020-07-31 …
一个复合函数间断点的问题.题目就是说设f(x)和g(x)在(-∞,+∞)内有定义,f(x)为连续函 2020-08-02 …
数学判断题,求教.1.函数y=lnC,则y'=1/c2.若函数f(x)在X1上点连续,则函数f(x 2020-08-02 …