早教吧作业答案频道 -->数学-->
如图,直线y=kx+b经过A(-3,203)、B(5,-4)两点,过点A作AD⊥x轴于D点,过点B作BC⊥y轴于C点,AB与x轴相交于E点,判断四边形BCDE的形状,并加以证明.
题目详情
如图,直线y=kx+b经过A(-3,
)、B(5,-4)两点,过点A作AD⊥x轴于D点,过点B作BC⊥y轴于C点,AB与x轴相交于E点,判断四边形BCDE的形状,并加以证明.

| 20 |
| 3 |

▼优质解答
答案和解析
四边形BCDE为菱形.
证明:设直线AB的解析式为y=kx+b,
将点A(-3,
)、点B(5,-4)代入到y=kx+b中,
,解得:
.
∴直线AB的解析式为y=-
x+
.
令y=0,则-
x+
=0,解得:x=2,
∴点E的坐标为(2,0).
∵BC⊥y轴于C点,
∴BC∥x轴∥DE.
∵点A(-3,
)、点B(5,-4),
∴点D(-3,0),点C(0,-4),
∴BC=5-0=5,DE=2-(-3)=5,
∴BC=DE.
∴四边形BCDE为平行四边形.
在Rt△COD中,OC=4,OD=3,
∴CD=
=5.
∵BC=DE=5,
∴BC=CD,
∴四边形BCDE为菱形.
证明:设直线AB的解析式为y=kx+b,
将点A(-3,
| 20 |
| 3 |
|
|
∴直线AB的解析式为y=-
| 4 |
| 3 |
| 8 |
| 3 |
令y=0,则-
| 4 |
| 3 |
| 8 |
| 3 |
∴点E的坐标为(2,0).
∵BC⊥y轴于C点,
∴BC∥x轴∥DE.
∵点A(-3,
| 20 |
| 3 |
∴点D(-3,0),点C(0,-4),
∴BC=5-0=5,DE=2-(-3)=5,
∴BC=DE.
∴四边形BCDE为平行四边形.
在Rt△COD中,OC=4,OD=3,
∴CD=
| OC2+OD2 |
∵BC=DE=5,
∴BC=CD,
∴四边形BCDE为菱形.
看了 如图,直线y=kx+b经过A...的网友还看了以下:
如图,梯形ABCD的上底长是X,下底长是15,高是8梯形ABCD的面积Y和上底X的关系式是什么?用 2020-05-16 …
如图,在直角坐标系中,点A的坐标为(1,0),点B在y轴正半轴上且三角形AOB是等腰三角形点C与点 2020-06-03 …
在平面直角坐标中,抛物线y等于负x平方加2x加3,点A(负1,0)点P(2,3)和点Q都在抛物线上 2020-07-19 …
如图,正方形ABCD中,AB=1,G为DC中点,E为BC上任意一点,(点E与B,C不重合如图,在正 2020-07-20 …
二次函数y=x2的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛 2020-07-30 …
三角形ABC中,AB=AC=5,tanC=3/4,点D是BC边上一个动点,DE//AC交AB与E, 2020-08-01 …
1.已知a,b,c是△ABC的三条边,且满足a方加b方加c方减ab减bc减ac等于0,试判断三角形A 2020-11-01 …
若直线Y等于二分之三X加M与Y等于负2分之一X加N都经过点A(负2,0),且分别和Y轴交于点B和点C 2021-01-10 …
cloudwindrainsnowsunfogluckhealthsleepshinenoisefu 2021-01-12 …
cloudwindrainsnowsunfogluckhealthsleepshinenoisefu 2021-01-12 …