早教吧作业答案频道 -->数学-->
如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=;(2)点A关于点D的对称点为点F,
题目详情
如图,在Rt△ABC中,∠C=90°,∠A=30°, ![]() (1)当点D运动到线段AC中点时,DE= ; (2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切. ![]() |
如图,在Rt△ABC中,∠C=90°,∠A=30°,
.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.

(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.

如图,在Rt△ABC中,∠C=90°,∠A=30°,
.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.

(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.

如图,在Rt△ABC中,∠C=90°,∠A=30°,
.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.

(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.

如图,在Rt△ABC中,∠C=90°,∠A=30°,
.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.

(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.



▼优质解答
答案和解析
;
或
;
或
;
或
;
或
;
或
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,
,
∴BC=
AB=
,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=
BC=
,
故答案为:
;
(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=
,AB=
,AC=6,
∴由三角形面积公式得:
BC•AC=
AB•CH, CH=3,
分为两种情况:
①如图1,
∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=
,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
②如图2,
∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
故答案为:
或
![]() ![]() ![]() |















(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可; (2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可. (1)∵∠C=90°,∠A=30°, ![]() ∴BC= ![]() ![]() ∵∠C=90°,DE⊥AC, ∴DE∥BC, ∵D为AC中点, ∴E为AB中点, ∴DE= ![]() ![]() 故答案为: ![]() (2)过C作CH⊥AB于H, ∵∠ACB=90°,BC= ![]() ![]() ∴由三角形面积公式得: ![]() ![]() 分为两种情况: ①如图1, ![]() ∵CF=CH=3, ∴AF=6﹣3=3, ∵A和F关于D对称, ∴DF=AD= ![]() ∵DE∥BC, ∴△ADE∽△ACB, ∴ ![]() ∴ ![]() ![]() DE= ![]() ②如图2, ![]() ∵CF=CH=3, ∴AF=6+3=9, ∵A和F关于D对称, ∴DF=AD=4.5, ∵DE∥BC, ∴△ADE∽△ACB, ∴ ![]() ∴ ![]() ![]() DE= ![]() 故答案为: ![]() ![]() |
(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,
,
∴BC=
AB=
,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=
BC=
,
故答案为:
;
(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=
,AB=
,AC=6,
∴由三角形面积公式得:
BC•AC=
AB•CH, CH=3,
分为两种情况:
①如图1,
∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=
,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
②如图2,
∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
故答案为:
或
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,

∴BC=


∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=


故答案为:

(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=


∴由三角形面积公式得:


分为两种情况:
①如图1,

∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=

∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

②如图2,

∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

故答案为:


(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,
,
∴BC=
AB=
,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=
BC=
,
故答案为:
;
(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=
,AB=
,AC=6,
∴由三角形面积公式得:
BC•AC=
AB•CH, CH=3,
分为两种情况:
①如图1,
∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=
,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
②如图2,
∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
故答案为:
或
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,

∴BC=


∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=


故答案为:

(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=


∴由三角形面积公式得:


分为两种情况:
①如图1,

∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=

∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

②如图2,

∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

故答案为:


(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,
,
∴BC=
AB=
,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=
BC=
,
故答案为:
;
(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=
,AB=
,AC=6,
∴由三角形面积公式得:
BC•AC=
AB•CH, CH=3,
分为两种情况:
①如图1,
∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=
,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
②如图2,
∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
故答案为:
或
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,

∴BC=


∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=


故答案为:

(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=


∴由三角形面积公式得:


分为两种情况:
①如图1,

∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=

∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

②如图2,

∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

故答案为:


(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,
,
∴BC=
AB=
,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=
BC=
,
故答案为:
;
(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=
,AB=
,AC=6,
∴由三角形面积公式得:
BC•AC=
AB•CH, CH=3,
分为两种情况:
①如图1,
∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=
,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
②如图2,
∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
故答案为:
或
(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,

∴BC=


∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=


故答案为:

(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=


∴由三角形面积公式得:


分为两种情况:
①如图1,

∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=

∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

②如图2,

∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

故答案为:


(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
(1)∵∠C=90°,∠A=30°,

∴BC=


∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=


故答案为:

(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=


∴由三角形面积公式得:


分为两种情况:
①如图1,

∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=

∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

②如图2,

∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴

∴


DE=

故答案为:


看了 如图,在Rt△ABC中,∠C...的网友还看了以下:
已知曲线C:y=-x^2+x+2与曲线C'关于点P(a,2a)中心对称,并且C与C’相交与A、B两 2020-04-05 …
已知抛物线y=ax^2-2x+c与他的对称轴交于A(1.-4)与Y轴交于点C,与X轴正半轴交于点B 2020-05-16 …
(2012•温州)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P 2020-06-12 …
(2014•兰州)如图,抛物线y=-12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线 2020-06-13 …
(2009•河池)如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称 2020-06-14 …
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0, 2020-06-14 …
如图,抛物线y=-x2+x+2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.( 2020-07-18 …
(2005•福州)已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对 2020-07-21 …
如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3 2020-07-29 …
如图,抛物线y=-12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点 2020-08-01 …