早教吧作业答案频道 -->数学-->
探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试探究∠BAD
题目详情
探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试探究∠BAD与∠CDE的数量关系;
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其它条件不变,试继续探究∠BAD与∠CDE的数量关系.

(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试探究∠BAD与∠CDE的数量关系;
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其它条件不变,试继续探究∠BAD与∠CDE的数量关系.

▼优质解答
答案和解析
(1)∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=105°,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠EDC,
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC-∠EDC=105°-∠EDC=45°+∠EDC,
解得:∠EDC=30°.
(2)∠EDC=
∠BAD.
证明:设∠BAD=x,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=45°+x,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠EDC,
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC-∠EDC=∠45°+x-∠EDC=45°+∠EDC,
解得:∠EDC=
∠BAD.
(3)∠EDC=
∠BAD.
证明:设∠BAD=x,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=∠B+x,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠EDC,
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC-∠EDC=∠B+x-∠EDC=∠B+∠EDC,
解得:∠EDC=
∠BAD.
∴∠ADC=∠B+∠BAD=105°,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠EDC,
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC-∠EDC=105°-∠EDC=45°+∠EDC,
解得:∠EDC=30°.
(2)∠EDC=
1 |
2 |
证明:设∠BAD=x,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=45°+x,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠EDC,
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC-∠EDC=∠45°+x-∠EDC=45°+∠EDC,
解得:∠EDC=
1 |
2 |
(3)∠EDC=
1 |
2 |
证明:设∠BAD=x,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=∠B+x,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠EDC,
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC-∠EDC=∠B+x-∠EDC=∠B+∠EDC,
解得:∠EDC=
1 |
2 |
看了 探究与发现:如图①,在△AB...的网友还看了以下:
如图,四边形ABCD是平行四边形,点E、F分别为AD、BC边上的点,且AE=CF求证:四边形BED 2020-05-16 …
设f(x),g(x)在[a,b]上连续,且均为严格单增的正函数,证明:存在c€(a,b)使f(b) 2020-06-18 …
设函数f(x)在a,b上有连续函数,且存在c∈(a,b),使f'(c)=0,证明存在ξ∈(a,b) 2020-06-18 …
求证:已知f(x)在[a,b]存在二阶导数,f'(a)=f'(b)=0,则在存在c∈[a,b],有 2020-07-20 …
关于积分中值定理的题设f(x)在[a,b]上连续,在(a,b)内可导,且存在c∈(a,b),使得∫ 2020-07-31 …
关于泰勒公示展开求证:已知f(x)在[a,b]存在二阶导数,f'(a)=f'(b)=0,则在存在c∈ 2020-11-23 …
如图,在C城周边已有两条公路l1,l2在点O处交汇,现规划在公路l1,l2上分别选择A,B两处为交汇 2020-12-01 …
某城区对环城河道进行整治,如图,在C段和D段岸河需要土方数分别为1025立方米和1340立方米,现离 2020-12-08 …
读某房屋的冬季、夏季太阳方位示意图,回答下面试题.房屋一定坐落在(C)A.东半球B.西半球C.南半球 2020-12-10 …
如图,点A与点C重合,点B落在C、D之间,这时我们说线段AB小于CD,记作AB<CD想一想,还有其他 2021-01-15 …