已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为.
已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为 .
.
【考点】直线与圆的位置关系.
【分析】先求出弦长|AB|的长度,然后结合圆与直线的位置关系图象,然后将ABCD的面积看成两个三角形△ABC和△ACD的面积之和,分析可得当BD为AC的垂直平分线时,四边形ABCD的面积最大.
【解答】把圆M:x2+y2﹣2x+2y﹣1=0化为标准方程:(x﹣1)2+(y+1)2=3,圆心(1,﹣1),半径r=.
直线与圆相交,由点到直线的距离公式的弦心距d==
,
由勾股定理的半弦长==
,所以弦长|AB|=2×
=
.
又B,D两点在圆上,并且位于直线AC的两侧,
四边形ABCD的面积可以看成是两个三角形△ABC和△ACD的面积之和,
如图所示,
当B,D为如图所示位置,即BD为弦AC的垂直平分线时(即为直径时),
两三角形的面积之和最大,即四边形ABCD的面积最大,
最大面积为:S=×|AB|×|CE|+
×|AB|×|DE|
==
.
故答案为:.
下列说法中,正确的是[]A.0是最小的有理数B.任一个有理数的绝对值都是正数C.﹣a是负数D.3和 2020-05-13 …
已知椭圆C:(a>b>0)的长轴长为4,焦距为2.(I)求椭圆C的方程;(Ⅱ)过动点M(0,m)( 2020-05-15 …
已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半 2020-06-12 …
a小于﹣a是否正确?说明理由 2020-07-25 …
已知F是双曲线C:x^2/a^2-y^2/b^2=1 (a>0,b>0)的左焦点,B1B2是双曲线 2020-07-30 …
已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角 2020-07-31 …
已知椭圆C:(a>b>0)的离心率是e=,若点P(0,)到椭圆C上的点的最远距离为。(1)求椭圆C 2020-07-31 …
在平面直角坐标系xoy中,已知椭圆C:x^2/a^2+y^2/b^2=1(a>b≥1)的离心率e= 2020-08-01 …
已知点Q(1,0)在椭圆C:y2a2+x2b2=1(a>b>0)上,且椭圆C的离心率22.(Ⅰ)求椭 2020-11-04 …
已知点F(1,0)和直线l:x=-1,动点P到直线l的距离等于到点F的距离.(1)求点P的轨迹C的方 2020-11-27 …