早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•咸宁)如图,已知直线y=13x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.(1)点C的坐标是线段AD的长等于;(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c

题目详情
(2013•咸宁)如图,已知直线y=
1
3
x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.
(1)点C的坐标是______线段AD的长等于______;
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点C,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵直线y=
1
3
x+1与x轴交于点A,与y轴交于点B,
∴y=0时,x=-3,x=0时,y=1,
∴A点坐标为:(-3,0),B点坐标为:(0,1),
∴OC=3,DO=1,
∴点C的坐标是(0,3),线段AD的长等于4;

(2)∵CM=OM,
∴∠OCM=∠COM.
∵∠OCM+∠ODM=∠COM+∠MOD=90°,
∴∠ODM=∠MOD,
∴OM=MD=CM,
∴点M是CD的中点,
∴点M的坐标为(
1
2
3
2
).
(说明:由CM=OM得到点M在OC在垂直平分线上,所以点M的纵坐标为
3
2
,再求出直线CD的解析式,进而求出点M的坐标也可.)
∵抛物线y=x2+bx+c经过点C,M,
c=3
1
4
+
1
2
b+c=
3
2

解得:
b=−
7
2
c=3

∴抛物线y=x2+bx+c的解析式为:y=x2-
7
2
x+3.

(3)抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形.
情形1:如图1,当点F在点C的左边时,四边形CFEP为菱形.

∴∠FCE=∠PCE,
由题意可知,OA=OC,
∴∠ACO=∠PCE=45°,
∴∠FCP=90°,
∴菱形CFEP为正方形.
过点P作PH⊥CE,垂足为H,
则Rt△CHP为等腰直角三角形.
∴CP=
2
CH=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号