早教吧作业答案频道 -->其他-->
(2013•咸宁)如图,已知直线y=13x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.(1)点C的坐标是线段AD的长等于;(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c
题目详情

1 |
3 |
(1)点C的坐标是______线段AD的长等于______;
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点C,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵直线y=
x+1与x轴交于点A,与y轴交于点B,
∴y=0时,x=-3,x=0时,y=1,
∴A点坐标为:(-3,0),B点坐标为:(0,1),
∴OC=3,DO=1,
∴点C的坐标是(0,3),线段AD的长等于4;
(2)∵CM=OM,
∴∠OCM=∠COM.
∵∠OCM+∠ODM=∠COM+∠MOD=90°,
∴∠ODM=∠MOD,
∴OM=MD=CM,
∴点M是CD的中点,
∴点M的坐标为(
,
).
(说明:由CM=OM得到点M在OC在垂直平分线上,所以点M的纵坐标为
,再求出直线CD的解析式,进而求出点M的坐标也可.)
∵抛物线y=x2+bx+c经过点C,M,
∴
,
解得:
.
∴抛物线y=x2+bx+c的解析式为:y=x2-
x+3.
(3)抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形.
情形1:如图1,当点F在点C的左边时,四边形CFEP为菱形.

∴∠FCE=∠PCE,
由题意可知,OA=OC,
∴∠ACO=∠PCE=45°,
∴∠FCP=90°,
∴菱形CFEP为正方形.
过点P作PH⊥CE,垂足为H,
则Rt△CHP为等腰直角三角形.
∴CP=
CH=

1 |
3 |
∴y=0时,x=-3,x=0时,y=1,
∴A点坐标为:(-3,0),B点坐标为:(0,1),
∴OC=3,DO=1,
∴点C的坐标是(0,3),线段AD的长等于4;
(2)∵CM=OM,
∴∠OCM=∠COM.
∵∠OCM+∠ODM=∠COM+∠MOD=90°,
∴∠ODM=∠MOD,
∴OM=MD=CM,
∴点M是CD的中点,
∴点M的坐标为(
1 |
2 |
3 |
2 |
(说明:由CM=OM得到点M在OC在垂直平分线上,所以点M的纵坐标为
3 |
2 |
∵抛物线y=x2+bx+c经过点C,M,
∴
|
解得:
|
∴抛物线y=x2+bx+c的解析式为:y=x2-
7 |
2 |
(3)抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形.
情形1:如图1,当点F在点C的左边时,四边形CFEP为菱形.

∴∠FCE=∠PCE,
由题意可知,OA=OC,
∴∠ACO=∠PCE=45°,
∴∠FCP=90°,
∴菱形CFEP为正方形.
过点P作PH⊥CE,垂足为H,
则Rt△CHP为等腰直角三角形.
∴CP=
2 |
|
看了 (2013•咸宁)如图,已知...的网友还看了以下:
如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在如图,抛物 2020-06-03 …
建筑安装工程现场管理费的组成内容包括( )。 A.工程排污费 B.工程点交费 C.特殊地区施工 2020-06-07 …
建筑安装工程直接费中措施费的组成内容包括()。 A.夜间施工费 B.工程点交费 C.工程排 2020-06-07 …
抛物线y=x^2-2x-3与x轴交与A,B两点,与y轴交与C点.设直线y=-x+3与y轴的交点抛物 2020-06-14 …
如图,抛物线y=ax²+bx+c(a>0交x轴于A,B两点,交y轴于C点,A点在B点的左侧,已知B 2020-06-14 …
多个交换机连接之间用光纤串联最多可以连接多少从A点交换机到B点交换机,从B点再到C点交换机,之间用 2020-06-18 …
直线y=-√3/3x+b交Y轴于点A,与X轴交于点C,与反比例函数y=k/x在第一象限交于点B,在 2020-07-26 …
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E 2020-07-31 …
已知,如图抛物线y=ax2+3ax+c(a》0)与外轴交与点C,与x交与A,B两点已知:如图,抛物线 2020-11-27 …
《背影》本文的记叙线索是A.时间推移B.地点交换C.情感加深D.父亲的背影 2021-01-07 …