早教吧作业答案频道 -->数学-->
如图,已知一次函y=x-1的图象与x轴、y轴分别交于点A、B,点P是y轴上的任意一点,点C是一次函数y=x-1图象上的任意一点,且点C位于第一象限,(1)求A、B两点的坐标;(2)过点C作CD⊥x轴,
题目详情
如图,已知一次函y=x-1的图象与x轴、y轴分别交于点A、B,点P是y轴上的任意一点,点C是一次函数y=x-1图象上的任意一点,且点C位于第一象限,
(1)求A、B两点的坐标;
(2)过点C作CD⊥x轴,垂足为D,连接PA、PC,若PA=PC,求证:(PO-CD)是一个定值;
(3)若以点P、A、C为顶点的三角形是等腰直角三角形,求点P的坐标.(提示:作答时可利用备用图画示意图)

(1)求A、B两点的坐标;
(2)过点C作CD⊥x轴,垂足为D,连接PA、PC,若PA=PC,求证:(PO-CD)是一个定值;
(3)若以点P、A、C为顶点的三角形是等腰直角三角形,求点P的坐标.(提示:作答时可利用备用图画示意图)

▼优质解答
答案和解析
(1)当y=0时,x-1=0,解得x=1,即A(1,0);
当x=0时,y=-1,即B(0,-1);
(2)证明:设P(0,a),C(x,x-1),
由PA=PC,得
1+a2=x2+(a-x+1)2,
化简,得
x2-(a+1)x+a=0,
解得x=1(不符合题意的解要舍去),x=a,
C(a,a-1).
PO-CD=a-(a-1)=1,
∴PO-CD是定值;
(3)如图1:
,
①PA=PC且∠PCA=45°,
C与B重合,P与O重合,即P1(0,0);
②如图2:
,
PA=AC时,∠PAC=90°,直线PA的解析式为y=-x+b,
将A点坐标代入,得-1+b=0,
解得b=1,
即PB的解析式为y=-x+1,
当x=0时,y=1,即P2(0,1),
③如图3:
,
PC=AC时,∠PAC=45°,∠CAD=45°,
∠PAD=∠PAC+∠CAD=90°,
即PA⊥x轴,P不在y轴上,P点不存在,
综上所述:点P、A、C为顶点的三角形是等腰直角三角形,点P的坐标(0,0),(0,1).
当x=0时,y=-1,即B(0,-1);
(2)证明:设P(0,a),C(x,x-1),
由PA=PC,得
1+a2=x2+(a-x+1)2,
化简,得
x2-(a+1)x+a=0,
解得x=1(不符合题意的解要舍去),x=a,
C(a,a-1).
PO-CD=a-(a-1)=1,
∴PO-CD是定值;
(3)如图1:
,①PA=PC且∠PCA=45°,
C与B重合,P与O重合,即P1(0,0);
②如图2:
,PA=AC时,∠PAC=90°,直线PA的解析式为y=-x+b,
将A点坐标代入,得-1+b=0,
解得b=1,
即PB的解析式为y=-x+1,
当x=0时,y=1,即P2(0,1),
③如图3:
,PC=AC时,∠PAC=45°,∠CAD=45°,
∠PAD=∠PAC+∠CAD=90°,
即PA⊥x轴,P不在y轴上,P点不存在,
综上所述:点P、A、C为顶点的三角形是等腰直角三角形,点P的坐标(0,0),(0,1).
看了 如图,已知一次函y=x-1的...的网友还看了以下:
如图,M是四边形ABCD对角线的交点,AC⊥x轴于点C,BD⊥y轴于点B.反比例函数C1:y=4x 2020-04-08 …
4.一次函数的图象过点A(-1,4)且与y轴交点的纵坐标为-2,求这个函数的关系式.5.求下列函数 2020-04-25 …
如图 已知 直线l∶y=-√3x÷3+√3交x轴于点A 交y轴于点B 将△AOB沿直线l翻折 点如 2020-05-16 …
如图1所示,已知y=6x(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)( 2020-06-08 …
已知二次涵数Y=X的二次方-(2m+4)X+(m-2)(m+2)的图象与Y轴交点C在原点下方,与X 2020-06-29 …
如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x 2020-07-20 …
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D 2020-08-01 …
如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限相交于点P 2020-11-01 …
在Rt△ABC中,∠CAB=90°,点A在y轴上,点B在x轴上,已知点C(1,4),tan∠CBA= 2020-12-25 …
数轴上点O表示原点,点A表示-2,点B表示1,点C表示2,点D表示-1(1)数轴可以看成是什么几何图 2021-02-04 …