早教吧作业答案频道 -->数学-->
如图2,在平面直角坐标系xOy中,已知OP平分∠yOx.点P(2,2),点A在x轴正半轴上,联结PA,过点P作PB⊥PA交轴正半轴于点B.(1)如图1,当PA⊥x轴时,求点A的坐标;(2)如图2,当PA不垂直
题目详情
如图2,在平面直角坐标系xOy中,已知OP平分∠yOx.点P(2,2),点A在x轴正半轴上,联结PA,过点P作PB⊥PA交轴正半轴于点B.
(1)如图1,当PA⊥x轴时,求点A的坐标;
(2)如图2,当PA不垂直于x轴时,联结AB,试判断△PAB的形状,并说明理由;
(3)如图2,当PA不垂直于x轴时,请直接写出四边形APBO的面积.

(1)如图1,当PA⊥x轴时,求点A的坐标;
(2)如图2,当PA不垂直于x轴时,联结AB,试判断△PAB的形状,并说明理由;
(3)如图2,当PA不垂直于x轴时,请直接写出四边形APBO的面积.

▼优质解答
答案和解析
(1)∵PA⊥x轴,点P(2,2),
∴OA=2,
∴A(2,0);
(2)过P作PC⊥x轴于C,PD⊥y轴于D,
∵OP平分∠yOx,
∴PD=PC,
∴四边形APBO是正方形,
∴∠CPD=90°,
∵∠APB=90°,
∴∠APC=∠DPB,
在△PDB与△PAC中,
,
∴△PDB≌△PAC,
∴PB=PA,
∵∠APB=90°,
∴△APB是等腰直角三角形;
(3)∵点P(2,2),
∴PC=PD=2,
∵△PDB≌△PAC,
∴S四边形APBO=S正方形CPDO=2×2=4.
∴OA=2,
∴A(2,0);
(2)过P作PC⊥x轴于C,PD⊥y轴于D,
∵OP平分∠yOx,
∴PD=PC,
∴四边形APBO是正方形,
∴∠CPD=90°,
∵∠APB=90°,

∴∠APC=∠DPB,
在△PDB与△PAC中,
|
∴△PDB≌△PAC,
∴PB=PA,
∵∠APB=90°,
∴△APB是等腰直角三角形;
(3)∵点P(2,2),
∴PC=PD=2,
∵△PDB≌△PAC,
∴S四边形APBO=S正方形CPDO=2×2=4.
看了 如图2,在平面直角坐标系xO...的网友还看了以下:
已知椭圆中心在原点,且以坐标轴为对称轴1,已知椭圆中心在原点,且以坐标轴为对称轴,它到直线x+y= 2020-05-16 …
已知抛物线y=1/2x^2+x-5/2. (1)用配方法求它的顶点坐标和对称轴 (2)若该抛物线与 2020-05-16 …
在平面直角坐标系中,抛物线y=-x^2+bx+c的对称轴为直线x=3/2,与坐标轴交于A、B、C三 2020-06-10 …
1已知点A(a,2)和点B(-1,b)根据下列条件求出a,b的值.(1)A、B在坐标轴上、(2)A 2020-06-14 …
二次函数的应用已知抛物线y=ax^2+bx+c的图像经过A(0,1),B(1,2)两点,请根据以下 2020-06-14 …
在直角坐标系xOy中,圆C的方程为(x-1)2+y2=1.以O为极点,x轴的非负半轴为极轴建立极坐 2020-07-08 …
对任意正实数k,不等式k^2-4ak-8a>=0与8ak^2-4ak-1标准答案为:1)a0,f( 2020-07-09 …
某成年人的皮肤表面约1.2米^2,在1标准的大气压下,该人的皮肤承受的大气压力为多少牛?它相当于多 2020-07-26 …
在直角坐标系xOy中.直线,圆:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极 2020-07-31 …
大气压强1.上端封闭且装满水的玻璃管倒插在水槽中,若管子侧壁A处开一小孔,则管内的的水将会?2.在1 2020-12-08 …