早教吧作业答案频道 -->数学-->
如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,点B的坐标为(4,3),双曲线y=kx(x>0)交线段BC于点P(不与端点B、C重合),交线段AB于点Q(1)若P为边BC的中点,求双曲线的函数表
题目详情
如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,点B的坐标为(4,3),双曲线y=
(x>0)交线段BC于点P(不与端点B、C重合),交线段AB于点Q

(1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标;
(2)求k的取值范围;
(3)连接PQ,AC,判断:PQ∥AC是否总成立?并说明理由.
k |
x |

(1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标;
(2)求k的取值范围;
(3)连接PQ,AC,判断:PQ∥AC是否总成立?并说明理由.
▼优质解答
答案和解析
(1)∵四边形OABC是矩形,
∴BC∥OA,
∵点B坐标(4,3),
∴BC=4,AB=3,
∵PC=PB,
∴点P坐标(2,3),
∴反比例函数解析式y=
,
∵点Q的横坐标为4,
∴点Q的坐标为(4,
).
(2)设点P坐标(x,3),则0<x<4,
把点P(x,3)代入y=
得到,x=
,
∴0<
<4,
∴0<k<12.
(3)结论:PQ∥AC总成立.
理由:设P(m,3),Q(4,n),则3m=4n=k,
∴
=
=
=
,
=
=
=
,
∴
=
,
∵∠B=∠B,
∴△BPQ∽△BCA,
∴∠BPQ=∠BCA,
∴PQ∥AC.
∴BC∥OA,
∵点B坐标(4,3),

∴BC=4,AB=3,
∵PC=PB,
∴点P坐标(2,3),
∴反比例函数解析式y=
6 |
x |
∵点Q的横坐标为4,
∴点Q的坐标为(4,
3 |
2 |
(2)设点P坐标(x,3),则0<x<4,
把点P(x,3)代入y=
k |
x |
k |
3 |
∴0<
k |
3 |
∴0<k<12.
(3)结论:PQ∥AC总成立.
理由:设P(m,3),Q(4,n),则3m=4n=k,
∴
BP |
BC |
4-m |
4 |
4-
| ||
4 |
12-k |
12 |
BQ |
BA |
3-n |
3 |
3-
| ||
3 |
12-k |
12 |
∴
BP |
BC |
BQ |
BA |
∵∠B=∠B,
∴△BPQ∽△BCA,
∴∠BPQ=∠BCA,
∴PQ∥AC.
看了 如图,平面直角坐标系中,矩形...的网友还看了以下:
判断下列各题中,p是q的什么条件?(1)p:x=1是方程ax2+bx+c=0的根,q:a+b+c= 2020-04-09 …
已知an=2n,令bn=λq^(an)+λ(λ,q为常数,q>0且q≠1),Cn=3+n+(b1+ 2020-04-27 …
求解一电路题目已知RLC串联电路的端电压为,调电容C使电路中的消耗的功率达到最大值,此时电路电流, 2020-05-13 …
有理数集合定义的一些疑问 全体有理数的集合记作Q,Q={p/q| p为整数,q为正整数且p与q互质 2020-05-17 …
当电容器一端与大地相连时,问题来了高中物理.假设电容器没与大地相连时一端电荷量为Q一端为-Q,电压 2020-05-17 …
p是q的什么条件(1)p:未位数是2的正整数,q:可以被2整除的整数(2)p:角A与角B是对顶角, 2020-07-30 …
已知幂函数y=x^(p/q)(p,q为整数,p/q为最简分数)的图象是双曲线,过(-1,1),(1 2020-08-01 …
一端点多射线。角的个数?一端点多射线。角的个数是多少。是不是只用算<180°的。。若算>180°的有 2020-12-14 …
复变函数幂函数w=z^a当z为有理数p/q(p与q为互质整数,q>0)条件如题,z^(p/q)=e^ 2021-02-01 …
某斜面是由特殊材料制作而成,其倾角为37°,斜面长为l,表面动摩擦因数随底端至顶端的变化关系如图1所 2021-02-04 …