早教吧作业答案频道 -->数学-->
已知A是m*n的实矩阵,证明r(ATA)=r(A)AT是矩阵A的转置
题目详情
已知A是m*n的实矩阵,证明r(ATA)=r(A) AT是矩阵A的转置
▼优质解答
答案和解析
构造两个齐次线性方程组:
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(AT A)=n-基础解系中向量个数.
这个很好理解对吧,《线性代数》的基本内容.
现在来证明它们同
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0
其次证明(2)的解也是(1)的
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解.
于是R(A)=R(AT A)
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(AT A)=n-基础解系中向量个数.
这个很好理解对吧,《线性代数》的基本内容.
现在来证明它们同
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0
其次证明(2)的解也是(1)的
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解.
于是R(A)=R(AT A)
看了 已知A是m*n的实矩阵,证明...的网友还看了以下:
证明:r(AB)=r(B),则对任何可乘的矩阵M,有r(ABM)=r(BM) 2020-03-30 …
辛矩阵的行列式为什么等于1一个2nX2n的矩阵M(通常布于实数或复数域上)和A,使之满足M‘AM= 2020-04-12 …
求证明一个范数:向量X属于C^n,对于任何正有限nxn的矩阵M来说,证明(X^tMX)^-1是一个 2020-05-13 …
用四阶龙格库塔法求解矩阵微分方程要求电流就是求解矩阵微分方程:(R+pM(t))*I(t)+M(t 2020-05-13 …
存在逆矩阵的条件首先特别指明,我所说的矩阵不是方阵,A是一个m*n的矩阵,m不等于n怎么找到一个矩 2020-05-23 …
辛矩阵的行列式为什么等于1一个2nX2n的矩阵M(通常布于实数或复数域上)和A,使之满足M‘AM= 2020-07-10 …
一道线代题目:设A是一个m×n矩阵,r(A)=r…从A中任意划去m-s行与n-t列,其余元素按原来 2020-07-14 …
A为m行n列的矩阵,则(AX)^(T)*(AX)大于等于0.请问这是为什么呢?完整题目是:A为m行n 2020-11-11 …
线性代数特征向量问题求解1)设a是n阶矩阵A的特征向量,T是n阶可逆矩阵,B=T-1AT,求B的一个 2020-12-05 …
线形方程组的问题齐次线形方程组的一般解(通解)是不是唯一的啊?我在一道题中做出X=M[1,1,-3, 2020-12-25 …