早教吧作业答案频道 -->其他-->
辛矩阵的行列式为什么等于1一个2nX2n的矩阵M(通常布于实数或复数域上)和A,使之满足M‘AM=A,其中M'表M的转置矩阵,而A是一个固定的可逆斜对称矩阵即A=[0E;-E0].其中E是nXn阶单位方阵,求
题目详情
辛矩阵的行列式为什么等于1一个2nX2n的矩阵 M(通常布于实数或复数域上)和A,使之满足M‘AM=A,其中M'表 M的转置矩阵,而 A是一个固定的可逆斜对称矩阵即A=[0 E;-E 0].其中E是nXn阶单位方阵,求证M的行列式等于一。请问怎么证明?谢谢
▼优质解答
答案和解析
一般来讲你的矩阵A记成J,这个记号比较常用 然后再定义一下辛共轭Z^J=-JZ'J,那么辛矩阵就是满足M^J=M^{-1}的矩阵 按分块形式写 E F G H 的辛共轭是 H' -F' -G' E' 接下来构造性地证明辛QR分解,即任何辛矩阵M都可以分解成M=QR,其中Q是辛酉矩阵,R是块上三角阵 R= U V 0 -U'^{-1} 且U是上三角阵 显然det(R)=1,只要把QR分解构造出来并说明det(Q)=1即可 对于 M= E F G H 1)利用n维Householder镜像变换X,可以把G的第一列变成ge_1的形式,即最多只有第1个分量非零 那么对M作用Q_1=diag[conj(X), X]就可以把M当中的G的第一列消成只有一个非零元,显然det(Q_1)=1,且Q_1是辛酉矩阵 2)再对M的第n和n+1行用Givens旋转Y=[c s; -conj(s) conj(c)],可以把Q_1M的G位置的第一列完全消成零 取Q_2=diag[I_{n-1},Y,I_{n-1}],显然det(Q_2)=1 3)进一步对Q_2Q_1M的左上角块进行镜像变换可以把E位置的第一列消成只剩一个非零元,同样取共轭后作用到底下的两块 这样3小步消去后整个矩阵的第一列只剩下1个非零元,注意整个消去过程中的酉变换都是辛酉变换,所以保持辛结构,重复这样的步骤就可以把前n列消成[U; 0]的形式,这和普通矩阵的Householder消去法原理一样,只是略微复杂一点。 最后利用一下辛矩阵的定义,块上三角的辛矩阵的对角块一定是按U和-U'^{-1}成对出现的,这就证明了辛QR分解,作为副产品也得到了det(M)=1。 当然,辛酉矩阵的行列式为1也可以单独证,因为辛酉矩阵只有两个自由块,验证起来很容易。
看了 辛矩阵的行列式为什么等于1一...的网友还看了以下:
1.设A是n阶可逆方程,A*为A的伴随矩阵,试证(-A)*=(-1)^n-1A*2.设矩阵方程为A 2020-04-12 …
求极限(见下图)lim[(a1^x+a2^x+…+an^x)/n]^(1/x)其中a1,a2,…, 2020-05-16 …
求大大帮忙解一条关于矩阵N次幂的题,要详细方法,题在补充里x.1..10x...1...这矩阵是n 2020-05-23 …
我在信号频谱检测的时候遇到协方差矩阵表达形式R=X(n)X(n)内是一个十字右上标如图片说是伪逆矩 2020-06-10 …
设f(x)=[(x-a)^n]*h(x),其中h(x)在点a的某邻域内具有n-1阶导数,求f(a) 2020-07-13 …
已知矩阵方程,求矩阵,其中220已知矩阵方程AX=A+X,求矩阵X,其中A=213.010 2020-07-19 …
设f(x)=(x-x0)^n*g(x),其中n为正整数,g(x)在x0处连续,且g(x)不等于0, 2020-07-31 …
求一个积分的解法,数学比较好的来看看啊f(x)=cos(x*sinx)*cos(n*w*x),其中 2020-08-02 …
已知A是数域P上的n*n矩阵,设W1={AX|X∈P^n},W2={X|X∈P^n,AX=0}证明: 2020-10-31 …
对于n∈N*(n≥2),定义一个如下数阵:其中对任意的1≤i≤n,1≤j≤n,当i能整除j时,aij 2020-11-01 …