早教吧作业答案频道 -->数学-->
形如Fn=2的2n次方+1n=0,1,2,...的数成为费马数.证明:当n≥2时,Fn的末位数字是7
题目详情
形如Fn=2的2n次方+1 n=0,1,2,...的数成为费马数.证明:当n≥2时,Fn的末位数字是7
▼优质解答
答案和解析
根据当n≥2时,2n是4的倍数,故令2n=4t,于是Fn=22n+1=24t+1=16t+1,再根据16t(t≥2)末位数字一定是6即可进行解答.
证明:当n≥2时,2n是4的倍数,故令2n=4t.于是
Fn=22n+1=24t+1=16t+1
∵16t(t≥2)末位数字一定是6,
∴16t+1的末位数字是7,即Fn的末位数字是7
话说这个你看的懂吧.
证明:当n≥2时,2n是4的倍数,故令2n=4t.于是
Fn=22n+1=24t+1=16t+1
∵16t(t≥2)末位数字一定是6,
∴16t+1的末位数字是7,即Fn的末位数字是7
话说这个你看的懂吧.
看了 形如Fn=2的2n次方+1n...的网友还看了以下:
已知函数f(x)是偶函数,且f(x)=f(x-2),当x属于(0,1)时,f(x)=2^x-1(这 2020-05-13 …
函数y=(x)是定义在R+上的函数,并且满足下面三个条件(1)对任意正数X.Y,都有f(xy)=f 2020-06-04 …
f(0)=0f(1)=1f(k)=f(k-1)+f(k-2)当K为7的时候等于多少 2020-06-12 …
定义域在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4| 2020-07-23 …
分段函数的复合函数一个两个问题.1.设f(x)=|2,当|x|<1,g(x)=|0,当|x|=1| 2020-08-02 …
若函数f(x)不等于0,且f(x)满足下列三个条件:1.对任意实数a、b,均有f(a-b)=f(a 2020-08-03 …
若a满足x+lgx=4,b满足x+10^x=4,当x>0时f(x)=2,当x 2020-10-30 …
若a满足x+lgx=4,b满足x+10^x=4,当x>0时f(x)=2,当x 2020-10-30 …
第一题:设函数f(u)可导,y=f(x^2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函 2020-11-01 …
二.已知函数f(x)对任意的u,v属于R都有f(u+v)=f(u)+f(v)-2,当x大于0时,f( 2020-11-07 …