早教吧作业答案频道 -->数学-->
求证tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)tan(x-y)+tan(y-z)怎么化成tan〔(x-y)+(y-z)〕?
题目详情
求证tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
tan(x-y)+tan(y-z)怎么化成tan〔(x-y)+(y-z)〕?
tan(x-y)+tan(y-z)怎么化成tan〔(x-y)+(y-z)〕?
▼优质解答
答案和解析
两角和正切公式:
tan[(x-y)+(y-z)]=[tan(x-y)+tan(y-z)]/[1-tan(x-y)tan(y-z)]
tan(x-y)+tan(y-z)
=tan(x-y+y-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)-tan(x-z)tan(x-y)tan(y-z)
=-tan(z-x)+tan(z-x)tan(x-y)tan(y-z)
所以tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)成立
写得很清楚的,你难道还看不懂么?
tan[(x-y)+(y-z)]=[tan(x-y)+tan(y-z)]/[1-tan(x-y)tan(y-z)]
tan(x-y)+tan(y-z)
=tan(x-y+y-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)-tan(x-z)tan(x-y)tan(y-z)
=-tan(z-x)+tan(z-x)tan(x-y)tan(y-z)
所以tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)成立
写得很清楚的,你难道还看不懂么?
看了 求证tan(x-y)+tan...的网友还看了以下:
已知x,y,z满足y+z/x=z+x/y=x+y/z=k,求k的值我只知道一个,∵y+z/x=z+ 2020-04-26 …
线性规划数学题:实数x,y满足x-y+1≤0,x>0,y≤2,若实数x,y满足x-y+1≤0,x> 2020-05-16 …
x+y+z=36x-y=12x+z-y=18x+y+z=26①x-y=1②2x+z-y=18③x+ 2020-06-06 …
求证tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan( 2020-06-13 …
设F(x,y,z)=0可确定连续可微隐函数:x=x(y,z),y=y(x,z),z=z(x,y), 2020-06-13 …
已知(y+z)/x=(z+y)/y=(x+y)/z,求分式(x+y-z)/(x+y+2z)的值不好意 2020-10-31 …
(a+b+c)/3大于等于3*√abc设a=x^3,b=y^3,c=z^3x,y,z是非负数时x^3 2020-11-01 …
1.f(x-z,y-z)=0,其中f(u,v)是可微函数,证明:偏z/偏x+偏z/偏y=12.设z= 2020-11-01 …
x'=x(y-z);y'=y(z-x);z'=z(x-y);x'=x(y-z);y'=y(z-x); 2020-11-01 …
证明:设F(x,y,z)=0可以确定连续可微隐函数:x=x(y,z),y=y(z,x),z=z(x, 2020-11-03 …