早教吧作业答案频道 -->数学-->
如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.
题目详情
如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:

(1)DF=AE;
(2)DF⊥AC.

(1)DF=AE;
(2)DF⊥AC.
▼优质解答
答案和解析
证明:(1)延长DE交AB于点G,连接AD.
∵四边形BCDE是平行四边形,
∴ED∥BC,ED=BC.
∵点E是AC的中点,∠ABC=90°,
∴AG=BG,DG⊥AB.
∴AD=BD,
∴∠BAD=∠ABD.
∵BD平分∠ABC,
∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.
又BF=BC,
∴BF=DE.
∴在△AED与△DFB中,
,
∴△AED≌△DFB(SAS),
∴AE=DF,即DF=AE;
(2)设AC与FD交于点O.
∵由(1)知,△AED≌△DFB,
∴∠AED=∠DFB,
∴∠DEO=∠DFG.
∵∠DFG+∠FDG=90°,
∴∠DEO+∠EDO=90°,
∴∠EOD=90°,即DF⊥AC.

∵四边形BCDE是平行四边形,
∴ED∥BC,ED=BC.
∵点E是AC的中点,∠ABC=90°,
∴AG=BG,DG⊥AB.
∴AD=BD,
∴∠BAD=∠ABD.
∵BD平分∠ABC,
∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.
又BF=BC,
∴BF=DE.
∴在△AED与△DFB中,
|
∴△AED≌△DFB(SAS),
∴AE=DF,即DF=AE;
(2)设AC与FD交于点O.
∵由(1)知,△AED≌△DFB,
∴∠AED=∠DFB,
∴∠DEO=∠DFG.
∵∠DFG+∠FDG=90°,
∴∠DEO+∠EDO=90°,
∴∠EOD=90°,即DF⊥AC.
看了 如图,△ABC是直角三角形,...的网友还看了以下:
读图完成问题小题1:位于东西半球分界线上的点是A.F点B.D点C.C点D.G点小题2:同时位于东半 2020-04-23 …
读图,回答下列问题:(1)写出A、B、D点所在的半球(东西半球与南北半球):A,;B,;D,.(2 2020-05-13 …
如图,在平面直角坐标系中,直线AB.CD分别与x轴、y轴交与A.B.C.D,点A(-2,0),B( 2020-05-15 …
已知在平面直角坐标系中直线AB,CD分别与X轴,Y轴交于A,B,C,D,点A(-2,0)B(0,3 2020-05-15 …
矩形ABCD中,AB=8,AD=6,将其沿锅过BD中点o的直线EF对折使B与D点重合,求折痕EF的 2020-06-06 …
如图所示,在y轴上关于O点对称的A、B两点有等量同种点电荷+Q,在x轴上C点有点电荷-Q,且CO= 2020-06-29 …
某班同学在此地进行登山考察活动,他们用罗盘测得:A点在他们的北方,而B点在西北方,则他们在图上的位 2020-07-22 …
根据所学知识,对图中d、e两点生长素浓度的分析合理的是()A.若d点对应的浓度为a,则e点对应c点 2020-07-26 …
如图,匀强电场中的点A、B、C、D、E、F、G、H为立方体的8个顶点.已知G、F、B、D点的电势分别 2020-11-08 …
如图所示,在x轴上关于O点对称的A、B两点有等量同种点电荷+Q,在y轴上有C、D两点,且CO=OD, 2020-12-24 …