早教吧作业答案频道 -->数学-->
如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行
题目详情
如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.

(1)若ED⊥EF,求证:ED=EF;
(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);
(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.

(1)若ED⊥EF,求证:ED=EF;
(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);
(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.
▼优质解答
答案和解析
(1)证明:在▱ABCD中,
∵AD=AC,AD⊥AC,
∴AC=BC,AC⊥BC,
连接CE,
∵E是AB的中点,
∴AE=EC,CE⊥AB,
∴∠ACE=∠BCE=45°,
∴∠ECF=∠EAD=135°,
∵ED⊥EF,
∴∠CEF=∠AED=90°-∠CED,
在△CEF和△AED中,
,
∴△CEF≌△AED,
∴ED=EF;
(2) 由(1)知△CEF≌△AED,CF=AD,
∵AD=AC,
∴AC=CF,
∵DP∥AB,
∴FP=PB,
∴CP=
AB=AE,
∴四边形ACPE为平行四边形;
(3) 垂直,
理由:过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,
在△AME与△CNE中,
,
∴△AME≌△CNE,
∴∠ADE=∠CFE,
在△ADE与△CFE中,
,
∴△ADE≌△CFE,
∴∠DEA=∠FEC,
∵∠DEA+∠DEC=90°,
∴∠CEF+∠DEC=90°,
∴∠DEF=90°,
∴ED⊥EF.

∵AD=AC,AD⊥AC,
∴AC=BC,AC⊥BC,
连接CE,
∵E是AB的中点,
∴AE=EC,CE⊥AB,
∴∠ACE=∠BCE=45°,
∴∠ECF=∠EAD=135°,
∵ED⊥EF,
∴∠CEF=∠AED=90°-∠CED,
在△CEF和△AED中,
|

∴△CEF≌△AED,
∴ED=EF;
(2) 由(1)知△CEF≌△AED,CF=AD,
∵AD=AC,
∴AC=CF,
∵DP∥AB,
∴FP=PB,
∴CP=
1 |
2 |
∴四边形ACPE为平行四边形;
(3) 垂直,
理由:过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,
在△AME与△CNE中,
|

∴△AME≌△CNE,
∴∠ADE=∠CFE,
在△ADE与△CFE中,
|
∴△ADE≌△CFE,
∴∠DEA=∠FEC,
∵∠DEA+∠DEC=90°,
∴∠CEF+∠DEC=90°,
∴∠DEF=90°,
∴ED⊥EF.
看了 如图,四边形ABCD是平行四...的网友还看了以下:
如图,P为△ABC点,<APB=<BPC,将△ABP绕B点旋转60度到△A'BP',此时A',P' 2020-04-26 …
平面上有亮点A,B,它们之间距离5cm,分别就下列条件研究点P的存在性及点P与线段AB的位置关系, 2020-05-16 …
在同一平面内,过一点可能有两条以上的直线与已知直线平行吗?任意画一条直线a,在直线外取点P,并过点 2020-06-06 …
若P两条异面直线l,m外的任意一点,则()A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅 2020-06-15 …
若P两条异面直线l,m外的任意一点,则()A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅 2020-06-15 …
若P两条异面直线l,m外的任意一点,则()A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅 2020-06-15 …
已知向量OA,OB不共线.向量OP=aOA+bOB求证∶A,P,B三点共线的充要条件 2020-06-22 …
P是△ABC内的一点,说明PA+PB+PC>1/2(AB+BC+AC)图为一个三边不相等三角形(三 2020-07-22 …
已知平面α‖平面β,P∈α,P不∈β,过点P的两条直线交α,β于A.B.C.D四点,A.C∈α,B 2020-07-26 …
已知点O、A、B不在同一条直线上,点P为该平面上一点,且2OP=2OA+BA,则()A.点P在线段A 2020-12-15 …