早教吧作业答案频道 -->数学-->
如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板AHP中含45°角的顶点放在点A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边AP所在的直线交直线BC于点D,直角边AH所在的直
题目详情
如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板AHP中含45°角的顶点放在点A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边AP所在的直线交直线BC于点D,直角边AH所在的直线交直线BC于点E.
(1)在线段BC上取一点M,连接AM,若AD平分∠BAM,求证:AE平分∠MAC;
(2)如图1当0°<α≤45°时,求证:BD2+CE2=DE2;
(3)继续旋转三角板,当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立,现请你继续探究:当135°<α<180°时(如图2),等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立.说明理由.

(1)在线段BC上取一点M,连接AM,若AD平分∠BAM,求证:AE平分∠MAC;
(2)如图1当0°<α≤45°时,求证:BD2+CE2=DE2;
(3)继续旋转三角板,当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立,现请你继续探究:当135°<α<180°时(如图2),等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立.说明理由.

▼优质解答
答案和解析
证明:(1)∵∠BAC=90°,∠DAE=45°,
∴∠BAD+∠EAC=90°-45°=45°,∠DAM+∠MAE=45°,
∵AD平分∠BAM,
∴∠BAD=∠DAM,
∴∠MAE=∠EAC,
∴AE平分∠MAC;
(2)将△ABD沿AD对折得到△AFD,连接EF,

由对折可得:∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,
,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
(3)当135°<α<180°时,等量关系BD2+CE2=DE2仍然成立,
如图2,设AB与EF相交于点G.

∵将△ABD沿AD所在的直线对折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,
∴AF=AC.
又∵∠CAE=90°-∠BAE=90°-(45°-∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.
∴∠CAE=∠FAE.
在△AEF和△AEC中,
,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD-∠AFE=∠135°-∠C=135°-45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
∴∠BAD+∠EAC=90°-45°=45°,∠DAM+∠MAE=45°,
∵AD平分∠BAM,
∴∠BAD=∠DAM,
∴∠MAE=∠EAC,
∴AE平分∠MAC;
(2)将△ABD沿AD对折得到△AFD,连接EF,

由对折可得:∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,
|
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
(3)当135°<α<180°时,等量关系BD2+CE2=DE2仍然成立,
如图2,设AB与EF相交于点G.

∵将△ABD沿AD所在的直线对折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,
∴AF=AC.
又∵∠CAE=90°-∠BAE=90°-(45°-∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.
∴∠CAE=∠FAE.
在△AEF和△AEC中,
|
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD-∠AFE=∠135°-∠C=135°-45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
看了 如图1,在等腰直角△ABC中...的网友还看了以下:
设A,B,C,D是空间不共面的四点,且满足向量AB*AC=0,AC*AD=0,AB*AD=0,则三 2020-05-13 …
将一副三角板按如图所示的位置摆放,使得两块三角板的直角边AC和MD重合,已知AB=AC=8,将三角 2020-05-16 …
将一副三角板按如图所示的位置摆放,使得两块三角板的直角边AC和MD重合,已知AB=AC=8,将三角 2020-05-16 …
、已知非零向量AB→与AC→满足(AB→|AB→|+AC→|AC→|)·BC→=0且AB→|AB→ 2020-06-18 …
已知非零向量AB与AC满足(AB/|AB|+AC/|AC|)·BC=0,且AB/|AB|·AC/| 2020-07-30 …
在平行四边形ABCD中,AC•CB=0,AC=2,BC=1,若将其沿AC折成直二面角D-AC-B, 2020-08-02 …
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,√3b=2asinB,且向量AB•向量AC 2020-11-01 …
如图,将一个球放在两块光滑斜面板AB和AC之间,两板与水平面夹角都是60°.现在使AB板固定,使AC 2020-12-01 …
已知非零向量AB与AC满足(AB/|AB|+AC/|AC|)*BC=0,且(AB/|AB|*AC/| 2020-12-07 …
在三角形ABC中,AB=AC=8,角BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板 2021-01-01 …