早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知直线y=12x与双曲线y=kx(k>0)交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=kx(k>0)上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线y

题目详情
如图,已知直线y=
1
2
x与双曲线y=
k
x
(k>0)交于A,B两点,且点A的横坐标为4.

(1)求k的值;
(2)若双曲线y=
k
x
(k>0)上一点C的纵坐标为8,求△AOC的面积;
(3)过原点O的另一条直线l交双曲线y=
k
x
(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
▼优质解答
答案和解析
(1)∵点A横坐标为4,
把x=4代入y=
1
2
x中
得y=2,
∴A(4,2),
∵点A是直线y=
1
2
x与双曲线y=
k
x
(k>0)的交点,
∴k=4×2=8;
(2)解法一:如图,
∵点C在双曲线上,
当y=8时,x=1,
∴点C的坐标为(1,8).
过点A、C分别做x轴、y轴的垂线,垂足为M、N,得矩形DMON.
∵S矩形ONDM=32,S△ONC=4,S△CDA=9,S△OAM=4.
∴S△AOC=S矩形ONDM-S△ONC-S△CDA-S△OAM=32-4-9-4=15;
解法二:如图,
过点C、A分别做x轴的垂线,垂足为E、F,
∵点C在双曲线y=
8
x
上,
当y=8时,x=1,
∴点C的坐标为(1,8).
∵点C、A都在双曲线y=
8
x
上,
∴S△COE=S△AOF=4,
∴S△COE+S梯形CEFA=S△COA+S△AOF
∴S△COA=S梯形CEFA
∵S梯形CEFA=
1
2
×(2+8)×3=15,
∴S△COA=15;
(3)∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形APBQ是平行四边形,
∴S△POA=S平行四边形APBQ×
1
4
=
1
4
×24=6,
设点P的横坐标为m(m>0且m≠4),
得P(m,
8
m
),
过点P、A分别做x轴的垂线,垂足为E、F,
∵点P、A在双曲线上,
∴S△POE=S△AOF=4,
若0<m<4,如图,
∵S△POE+S梯形PEFA=S△POA+S△AOF
∴S梯形PEFA=S△POA=6.
1
2
(2+
8
m
)•(4-m)=6.
∴m1=2,m2=-8(舍去),
∴P(2,4);
若m>4,如图,
∵S△AOF+S梯形AFEP=S△AOP+S△POE
∴S梯形PEFA=S△POA=6.
1
2
(2+
8
m
)•(m-4)=6,
解得m1=8,m2=-2(舍去),
∴P(8,1).
∴点P的坐标是P(2,4)或P(8,1).