早教吧作业答案频道 -->其他-->
定义:如图(1),若分别以△ABC的三边AC,BC,AB为边向三角形外侧作正方形ACDE,BCFG和ABMN,则称这三个正方形为△ABC的外展三叶正方形,其中任意两个正方形为△ABC的外展双叶正方形.(1
题目详情
定义:如图(1),若分别以△ABC的三边AC,BC,AB为边向三角形外侧作正方形ACDE,BCFG和ABMN,则称这三个正方形为△ABC的外展三叶正方形,其中任意两个正方形为△ABC的外展双叶正方形.
(1)作△ABC的外展双叶正方形ACDE和BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图(2),当∠ACB=90°时,求证:S1=S2.
②如图(3),当∠ACB≠90°时,S1与S2是否仍然相等,请说明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三叶正方形,记△DCF,△AEN,△BGM的面积和为S,请利用图(1)探究:当∠ACB的度数发生变化时,S的值是否发生变化?若不变,求出S的值;若变化,求出S的最大值.

(1)作△ABC的外展双叶正方形ACDE和BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图(2),当∠ACB=90°时,求证:S1=S2.
②如图(3),当∠ACB≠90°时,S1与S2是否仍然相等,请说明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三叶正方形,记△DCF,△AEN,△BGM的面积和为S,请利用图(1)探究:当∠ACB的度数发生变化时,S的值是否发生变化?若不变,求出S的值;若变化,求出S的最大值.

▼优质解答
答案和解析
(1)证明:如图1,∵正方形ACDE和正方形BCFG,
∴AC=DC,BC=FC,∠ACD=∠BCF=90°,
∵∠ACB=90°,∴∠DCF=90°,
∴∠ACB=∠DCF=90°.
在△ABC和△DFC中,
,
∴△ABC≌△DFC(SAS).
∴S△ABC=S△DFC,
∴S1=S2.
(2)S1=S2.
理由如下:
如图3,过点A作AP⊥BC于点P,过点D作DQ⊥FC交FC的延长线于点Q.
∴∠APC=∠DQC=90°.
∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,
∵∠ACP+∠ACQ=90°,∠DCQ+∠ACQ=90°.
∴∠ACP=∠DCQ.
在△APC和△DQC中
,
∴△APC≌△DQC(AAS),
∴AP=DQ.
∴BC×AP=DQ×FC,
∴
BC×AP=
DQ×FC
∵S1=
BC×AP,S2=
FC×DQ,
∴S1=S2;
(3)由(2)得,S是△ABC面积的三倍,
要使S最大,只需三角形ABC的面积最大,
∴当△ABC是直角三角形,即∠ACB=90°时,S有最大值.
此时,S=3S△ABC=3×
×3×4=18.

∴AC=DC,BC=FC,∠ACD=∠BCF=90°,
∵∠ACB=90°,∴∠DCF=90°,
∴∠ACB=∠DCF=90°.
在△ABC和△DFC中,
|
∴△ABC≌△DFC(SAS).
∴S△ABC=S△DFC,
∴S1=S2.
(2)S1=S2.
理由如下:
如图3,过点A作AP⊥BC于点P,过点D作DQ⊥FC交FC的延长线于点Q.
∴∠APC=∠DQC=90°.

∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,
∵∠ACP+∠ACQ=90°,∠DCQ+∠ACQ=90°.
∴∠ACP=∠DCQ.
在△APC和△DQC中
|
∴△APC≌△DQC(AAS),
∴AP=DQ.
∴BC×AP=DQ×FC,
∴
1 |
2 |
1 |
2 |
∵S1=
1 |
2 |
1 |
2 |
∴S1=S2;
(3)由(2)得,S是△ABC面积的三倍,
要使S最大,只需三角形ABC的面积最大,
∴当△ABC是直角三角形,即∠ACB=90°时,S有最大值.
此时,S=3S△ABC=3×
1 |
2 |
看了 定义:如图(1),若分别以△...的网友还看了以下:
极端性原理平面上有n个点,其中任三个点都可组成三角形,且其面积均超不过1 ,求证:存在一个面积不超 2020-05-16 …
欧式几何证明请证明:平面内任意多边(边数大于三)形都能分割成许多三角形 2020-05-20 …
[急]数学题,大概和图论有关平面上n个点,任三点不共线,红蓝任意染色,求n的最小值,使得总有两个不 2020-06-12 …
如何证明:同圆内接四边形中正方形周长最长为什么要证以直径为边的三角形如何如何,如果不是以直径为边呢 2020-06-13 …
椭圆的一般方程在平面直角坐标系的任意位置的任意形状的任意方向的圆锥曲线(椭圆,双曲线,抛物线)的方 2020-06-21 …
在三角形中,A和B满足关系式1/tanAtanB>0,此三角形的形状是A锐角三角形B钝在三角形中, 2020-06-29 …
库立奇*大上定理圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把 2020-07-10 …
分别求出正十五边形任三个顶点所构成的锐角三角形及钝角三角形的个数. 2020-07-30 …
若四位数的各位数码中,任三个数码皆可构成一个三角形的三条边长,则称为四位三角形数,定义为的数码组,其 2020-11-20 …
CAD作图:作一个任意形状的三角形,使得它的面积和已知的四边形的面积相等作一个任意形状的三角形,使得 2020-12-25 …