早教吧作业答案频道 -->其他-->
定义:如图(1),若分别以△ABC的三边AC,BC,AB为边向三角形外侧作正方形ACDE,BCFG和ABMN,则称这三个正方形为△ABC的外展三叶正方形,其中任意两个正方形为△ABC的外展双叶正方形.(1
题目详情
定义:如图(1),若分别以△ABC的三边AC,BC,AB为边向三角形外侧作正方形ACDE,BCFG和ABMN,则称这三个正方形为△ABC的外展三叶正方形,其中任意两个正方形为△ABC的外展双叶正方形.
(1)作△ABC的外展双叶正方形ACDE和BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图(2),当∠ACB=90°时,求证:S1=S2.
②如图(3),当∠ACB≠90°时,S1与S2是否仍然相等,请说明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三叶正方形,记△DCF,△AEN,△BGM的面积和为S,请利用图(1)探究:当∠ACB的度数发生变化时,S的值是否发生变化?若不变,求出S的值;若变化,求出S的最大值.

(1)作△ABC的外展双叶正方形ACDE和BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图(2),当∠ACB=90°时,求证:S1=S2.
②如图(3),当∠ACB≠90°时,S1与S2是否仍然相等,请说明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三叶正方形,记△DCF,△AEN,△BGM的面积和为S,请利用图(1)探究:当∠ACB的度数发生变化时,S的值是否发生变化?若不变,求出S的值;若变化,求出S的最大值.

▼优质解答
答案和解析
(1)证明:如图1,∵正方形ACDE和正方形BCFG,
∴AC=DC,BC=FC,∠ACD=∠BCF=90°,
∵∠ACB=90°,∴∠DCF=90°,
∴∠ACB=∠DCF=90°.
在△ABC和△DFC中,
,
∴△ABC≌△DFC(SAS).
∴S△ABC=S△DFC,
∴S1=S2.
(2)S1=S2.
理由如下:
如图3,过点A作AP⊥BC于点P,过点D作DQ⊥FC交FC的延长线于点Q.
∴∠APC=∠DQC=90°.
∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,
∵∠ACP+∠ACQ=90°,∠DCQ+∠ACQ=90°.
∴∠ACP=∠DCQ.
在△APC和△DQC中
,
∴△APC≌△DQC(AAS),
∴AP=DQ.
∴BC×AP=DQ×FC,
∴
BC×AP=
DQ×FC
∵S1=
BC×AP,S2=
FC×DQ,
∴S1=S2;
(3)由(2)得,S是△ABC面积的三倍,
要使S最大,只需三角形ABC的面积最大,
∴当△ABC是直角三角形,即∠ACB=90°时,S有最大值.
此时,S=3S△ABC=3×
×3×4=18.
(1)证明:如图1,∵正方形ACDE和正方形BCFG,∴AC=DC,BC=FC,∠ACD=∠BCF=90°,
∵∠ACB=90°,∴∠DCF=90°,
∴∠ACB=∠DCF=90°.
在△ABC和△DFC中,
|
∴△ABC≌△DFC(SAS).
∴S△ABC=S△DFC,
∴S1=S2.
(2)S1=S2.
理由如下:
如图3,过点A作AP⊥BC于点P,过点D作DQ⊥FC交FC的延长线于点Q.
∴∠APC=∠DQC=90°.

∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,
∵∠ACP+∠ACQ=90°,∠DCQ+∠ACQ=90°.
∴∠ACP=∠DCQ.
在△APC和△DQC中
|
∴△APC≌△DQC(AAS),
∴AP=DQ.
∴BC×AP=DQ×FC,
∴
| 1 |
| 2 |
| 1 |
| 2 |
∵S1=
| 1 |
| 2 |
| 1 |
| 2 |
∴S1=S2;
(3)由(2)得,S是△ABC面积的三倍,
要使S最大,只需三角形ABC的面积最大,
∴当△ABC是直角三角形,即∠ACB=90°时,S有最大值.
此时,S=3S△ABC=3×
| 1 |
| 2 |
看了 定义:如图(1),若分别以△...的网友还看了以下:
“定义在R上的奇函数f(x)一定满足关系式()”,请求详解(A)f(x)-f(-x)>0(B)f( 2020-04-26 …
1.已知三角形ABC(a+b+c)(b+c+a)=3bcSinA=2sinBcosC判断三角形AB 2020-05-14 …
设函数f(x)在x=0处连续,下列命题错误的是()A.若limx→0f(x)x存在,则f(0)=0 2020-06-12 …
关于C是f(x)的重根的条件当且仅当C是f(x)与f‘(x)的公共根时,证明C是f(x)的重根. 2020-06-16 …
如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、C 2020-06-27 …
已知a,b,c是三角形的三边长,如果满足(a-b)2+b−8+|c2-64|=0,则三角形的形状是 2020-07-23 …
第1题A、f(x)是比g(x)高阶的无穷小B、f(x)是比g(x)低阶的无穷小C、f(x)与g(x 2020-07-30 …
二阶导数问题f(x)在c点导数为f'(c),若f'(c)=0,f''(c)≠0,则c点为f(x)极 2020-07-31 …
在△ABC中,∠A=2∠B=3∠C,可以判断该三角形的形状是()A.直角三角形B.锐角三角形C.钝 2020-08-03 …
已知a、b、c是三角形的三边长,如果满足(a-6)2++=0,则三角形的形状是()A、底与边不相等 2020-08-03 …