早教吧作业答案频道 -->数学-->
如图,经过点A(0,-6)的抛物线y=12x2+bx+c与x轴相交于B(-2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m&g
题目详情
如图,经过点A(0,-6)的抛物线y=
x2+bx+c与x轴相交于B(-2,0),C两点.

(1)求此抛物线的函数关系式和顶点D的坐标;
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;
(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.
| 1 |
| 2 |

(1)求此抛物线的函数关系式和顶点D的坐标;
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;
(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.
▼优质解答
答案和解析
(1)将A(0,-6),B(-2,0)代入y=
x2+bx+c,
得:
,
解得:
,
∴y=
x2-2x-6,
∴顶点坐标为(2,-8);
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1=
(x-2+1)2-8+m,
∴P(1,-8+m),
在抛物线y=
x2-2x-6中易得C(6,0),
∴直线AC为y2=x-6,
当x=1时,y2=-5,
∴-5<-8+m<0,
解得:3<m<8;
(3)∵A(0,-6),B(-2,0),
∴线段AB的中点坐标为(-1,-3),直线AB的解析式为y=-3x-6,
∴过AB的中点且与AB垂直的直线的解析式为:y=
x-
,
∴直线y=
x-
与y=
(x-1)2-8+m有交点,
联立方程,求的判别式为:
△=64-12(6m-29)≥0
解得:m≤
∴①当3<m<
时,存在两个Q点,可作出两个等腰三角形;
②当m=
时,存在一个点Q,可作出一个等腰三角形;
③当
<m<8时,Q点不存在,不能作出等腰三角形.
| 1 |
| 2 |
得:
|
解得:
|
∴y=
| 1 |
| 2 |
∴顶点坐标为(2,-8);
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1=
| 1 |
| 2 |
∴P(1,-8+m),
在抛物线y=
| 1 |
| 2 |
∴直线AC为y2=x-6,
当x=1时,y2=-5,
∴-5<-8+m<0,
解得:3<m<8;
(3)∵A(0,-6),B(-2,0),
∴线段AB的中点坐标为(-1,-3),直线AB的解析式为y=-3x-6,
∴过AB的中点且与AB垂直的直线的解析式为:y=
| 1 |
| 3 |
| 8 |
| 3 |
∴直线y=
| 1 |
| 3 |
| 8 |
| 3 |
| 1 |
| 2 |
联立方程,求的判别式为:
△=64-12(6m-29)≥0
解得:m≤
| 103 |
| 18 |
∴①当3<m<
| 103 |
| 18 |
②当m=
| 103 |
| 18 |
③当
| 103 |
| 18 |
看了 如图,经过点A(0,-6)的...的网友还看了以下:
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
如图,已知直线y=-2x+4与x轴y轴分别交于A,C两点,抛物线y=-2x²+bx+c(a≠0)经 2020-06-13 …
如果抛物线y=ax2+bx+c,过定点M(1,1),则称此抛物线为定点抛物线.(1)请你写出一条定 2020-07-01 …
如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕 2020-07-30 …
新定义:如果二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,0),那么称此二次函数图象为 2020-07-31 …
2011大连中考最后一题最后一问:如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、 2020-11-24 …
如图,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x²+bx+c经过点B和点C,点A 2021-01-10 …
如图,开口向下的抛物线y=ax²+bx+c与x轴交于点A(3,0),B(8,0)两点,抛物线上另有一 2021-01-10 …
(2011.浙江)如图,在直角坐标系中,抛物线y=ax^2+bx+c与x轴交与点A(﹣1,0)如图, 2021-01-10 …
如图,已知直线y=2x+6与x轴,y轴分别交于A,D两点,抛物线y=ax^2+bx+2(a≠0)经过 2021-01-11 …