早教吧作业答案频道 -->其他-->
(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=
题目详情

(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.
▼优质解答
答案和解析
(1)∵α=60°,BC=10,
∴sinα=
,
即sin60°=
=
,
解得CE=5
;
(2)①存在k=3,使得∠EFD=k∠AEF.
理由如下:连接CF并延长交BA的延长线于点G,
∵F为AD的中点,
∴AF=FD,
在平行四边形ABCD中,AB∥CD,
∴∠G=∠DCF,
在△AFG和△DFC中,
,
∴△AFG≌△DFC(AAS),
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF(直角三角形斜边上的中线等于斜边的一半),
∴∠AEF=∠G,
∵AB=5,BC=10,点F是AD的中点,
∴AG=5,AF=
AD=
BC=5,
∴AG=AF,
∴∠AFG=∠G,
在△EFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG(对顶角相等),
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF;
②设BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5-x+5=10-x,
在Rt△BCE中,CE2=BC2-BE2=100-x2,
在Rt△CEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,
∵由①知CF=GF,
∴CF2=(
CG)2=
CG2=
(200-20x)=50-5x,
∴CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-
)2+50+
,
∴当x=
,即点E是AB的中点时,CE2-CF2取最大值,
此时,EG
∴sinα=
CE |
BC |
即sin60°=
CE |
10 |
| ||
2 |
解得CE=5
3 |
(2)①存在k=3,使得∠EFD=k∠AEF.
理由如下:连接CF并延长交BA的延长线于点G,
∵F为AD的中点,
∴AF=FD,
在平行四边形ABCD中,AB∥CD,

∴∠G=∠DCF,
在△AFG和△DFC中,
|
∴△AFG≌△DFC(AAS),
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF(直角三角形斜边上的中线等于斜边的一半),
∴∠AEF=∠G,
∵AB=5,BC=10,点F是AD的中点,
∴AG=5,AF=
1 |
2 |
1 |
2 |
∴AG=AF,
∴∠AFG=∠G,
在△EFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG(对顶角相等),
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF;
②设BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5-x+5=10-x,
在Rt△BCE中,CE2=BC2-BE2=100-x2,
在Rt△CEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,
∵由①知CF=GF,
∴CF2=(
1 |
2 |
1 |
4 |
1 |
4 |
∴CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-
5 |
2 |
25 |
4 |
∴当x=
5 |
2 |
此时,EG
看了 (2012•广州)如图,在平...的网友还看了以下:
已知A={x丨丨x-a丨=4},B={1,2,b},是否存在实数a,使得对于任意实数b,都有A⊆B 2020-05-13 …
(2013•延安二模)如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点A,再在河这边沿 2020-06-20 …
关于x的方程|x2-x|-a=0,给出下列四个结论:①存在实数a,使得方程恰有2个不同的实根;②存 2020-07-30 …
一个小球在大碗里向下滚动,他是上边滚得快,还是在下边滚得快.A.斜面的坡度越小,球滚得越慢.这便是 2020-07-30 …
数学分析判断题设f(x)在[a,b]上连续,且在x1∈(a,b)处取得最小值,则存在a>0,使得数 2020-07-31 …
在比较a+b与aa-b与a的大小时,小丽说a+b一定大于aa-b一定小于a,得到了不少同学的认可.你 2020-11-03 …
(2004•襄阳)如图,MN表示襄樊至武汉的一段高速公路设计路线图.在点M测得点N在它的南偏东30° 2020-11-12 …
一道高一题目某船在海面A处测得灯塔C在北偏东30°方向,与A相距10根3海里,测得灯塔B在北偏西75 2020-11-13 …
求教-已知A={x||x-a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b都有A是 2020-11-20 …
关于扩展欧几里得的一个问题...扩展欧几里得里说到:gcd(a,b)表示a,b的最大公约数.那么存在 2020-11-21 …