早教吧作业答案频道 -->数学-->
设数列an的前n项和为sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,m属于N*,m为常数,m≠-3.(1)求an(2)若数列an的公比q=f(m),数列bn满足b1=a1,bn=3/2*f[b(n-1)],n属于N*,n≥2,求证{1/bn}为等差数列,并求bn(3)设数列cn满足cn=bn
题目详情
设数列an的前n项和为sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,m属于N*,m为常数,m≠-3.
(1)求an
(2)若数列an的公比q=f(m),数列bn满足b1=a1,bn=3/2*f[b(n-1)],n属于N*,n≥2,求证{1/bn}为等差数列,并求bn
(3)设数列cn满足cn=bn*b(n+2),Tn为数列cn的前n项和,且存在实数T满足Tn≥T,(n属于N*),求T的最大值
(1)求an
(2)若数列an的公比q=f(m),数列bn满足b1=a1,bn=3/2*f[b(n-1)],n属于N*,n≥2,求证{1/bn}为等差数列,并求bn
(3)设数列cn满足cn=bn*b(n+2),Tn为数列cn的前n项和,且存在实数T满足Tn≥T,(n属于N*),求T的最大值
▼优质解答
答案和解析
(1)p点代入直线方程:(3-m)Sn+2m*an-m-3=0;:(3-m)S(n-1)+2m*a(n-1)-m-3=0.相减得(3+m)an=2m*a(n-1),an/a(n-1)=2m/(3+m),an为等比数列,a1=1,an=[2m/(3+m)]^(n-1);
(2)f(m)=2m/(3+m).bn=bn=3/2*f[b(n-1)]=3/2*[2b(n-1)/(3+b(n-1))]=3b(n-1)/(3+b(n-1)).1/bn=1/b(n-1)+1/3,所以,{1/bn}为等差数列,1/bn=1/b1+(n-1)d=1+(n-1)=n;
(3)cn=bn*b(n+2)=n*(n+2)=n^2+2n,Tn为数列cn的前n项和,Tn=n(n+1)(2n+1)/6+2*(1+n)n/2=n(n+1)(2n+7)/6,因为n属于N*,当n取1时Tn值最小,Tn(min)=3;则t
(2)f(m)=2m/(3+m).bn=bn=3/2*f[b(n-1)]=3/2*[2b(n-1)/(3+b(n-1))]=3b(n-1)/(3+b(n-1)).1/bn=1/b(n-1)+1/3,所以,{1/bn}为等差数列,1/bn=1/b1+(n-1)d=1+(n-1)=n;
(3)cn=bn*b(n+2)=n*(n+2)=n^2+2n,Tn为数列cn的前n项和,Tn=n(n+1)(2n+1)/6+2*(1+n)n/2=n(n+1)(2n+7)/6,因为n属于N*,当n取1时Tn值最小,Tn(min)=3;则t
看了 设数列an的前n项和为sn,...的网友还看了以下:
(2012•普陀区一模)对于平面α、β、γ和直线a、b、m、n,下列命题中真命题是()A.若a⊥m 2020-04-08 …
对一个满二叉树,有m个叶子结点,n个结点,深度为h,则().A.n=h+mB.h+m对一个满二叉树 2020-04-26 …
如图,直线a垂直直线b,试作线段MN分别关于a、b成轴对称的线段M’N’和M”N”,并说如图,直线 2020-04-26 …
】某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,继续看下后面每一排都比前一排多一个 2020-05-16 …
已知(a^n·b^m·b)^3=a^19·b^15,那么m、n的值分别是?3Q题中a^n指的是a的 2020-06-03 …
初三的一次函数的题,一个某服装厂需要M和N种的服装一共80件,现有A布料70m,B布料52m.制作 2020-06-14 …
数学求极限问题啊lima0x^n+a1x^n-1+...+a(n-1)x+a(n)/b0x^m+b 2020-07-09 …
1.若(a^n*b^m*b)³=a^9*b^15,求2^m+n的值.2.计算;a^n-5(a^n+1 2020-11-01 …
对于平面α,β,γ和直线a,b,m,n,下列命题中真命题是()A.若a⊥m,a⊥n,m⊂α,n⊂α, 2020-11-02 …
输入包含多组数据.每组数据的第一行是两个正整数n和m,1≤n≤10000,1≤m≤1000000,表 2020-11-23 …