早教吧作业答案频道 -->数学-->
设数列an的前n项和为sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,m属于N*,m为常数,m≠-3.(1)求an(2)若数列an的公比q=f(m),数列bn满足b1=a1,bn=3/2*f[b(n-1)],n属于N*,n≥2,求证{1/bn}为等差数列,并求bn(3)设数列cn满足cn=bn
题目详情
设数列an的前n项和为sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,m属于N*,m为常数,m≠-3.
(1)求an
(2)若数列an的公比q=f(m),数列bn满足b1=a1,bn=3/2*f[b(n-1)],n属于N*,n≥2,求证{1/bn}为等差数列,并求bn
(3)设数列cn满足cn=bn*b(n+2),Tn为数列cn的前n项和,且存在实数T满足Tn≥T,(n属于N*),求T的最大值
(1)求an
(2)若数列an的公比q=f(m),数列bn满足b1=a1,bn=3/2*f[b(n-1)],n属于N*,n≥2,求证{1/bn}为等差数列,并求bn
(3)设数列cn满足cn=bn*b(n+2),Tn为数列cn的前n项和,且存在实数T满足Tn≥T,(n属于N*),求T的最大值
▼优质解答
答案和解析
(1)p点代入直线方程:(3-m)Sn+2m*an-m-3=0;:(3-m)S(n-1)+2m*a(n-1)-m-3=0.相减得(3+m)an=2m*a(n-1),an/a(n-1)=2m/(3+m),an为等比数列,a1=1,an=[2m/(3+m)]^(n-1);
(2)f(m)=2m/(3+m).bn=bn=3/2*f[b(n-1)]=3/2*[2b(n-1)/(3+b(n-1))]=3b(n-1)/(3+b(n-1)).1/bn=1/b(n-1)+1/3,所以,{1/bn}为等差数列,1/bn=1/b1+(n-1)d=1+(n-1)=n;
(3)cn=bn*b(n+2)=n*(n+2)=n^2+2n,Tn为数列cn的前n项和,Tn=n(n+1)(2n+1)/6+2*(1+n)n/2=n(n+1)(2n+7)/6,因为n属于N*,当n取1时Tn值最小,Tn(min)=3;则t
(2)f(m)=2m/(3+m).bn=bn=3/2*f[b(n-1)]=3/2*[2b(n-1)/(3+b(n-1))]=3b(n-1)/(3+b(n-1)).1/bn=1/b(n-1)+1/3,所以,{1/bn}为等差数列,1/bn=1/b1+(n-1)d=1+(n-1)=n;
(3)cn=bn*b(n+2)=n*(n+2)=n^2+2n,Tn为数列cn的前n项和,Tn=n(n+1)(2n+1)/6+2*(1+n)n/2=n(n+1)(2n+7)/6,因为n属于N*,当n取1时Tn值最小,Tn(min)=3;则t
看了 设数列an的前n项和为sn,...的网友还看了以下:
若x为任意实数时,二次三项式x2-6x+c的值都不小于0,则常数c满足的条件是( )A. c≥0 2020-05-17 …
若x为任意实数时,二次三项式x2-6x+c的值都不小于0,则常数c满足的条件是()A.c≥0B.c 2020-06-12 …
设随机变量X~t(n),Y~F(1,n),给定a(0<a<0.5),常数c满足P{X>c}=a,则 2020-07-09 …
已知a(m,0)b(m+4,0)若y轴上存在点c满足角acb为45度则m取值范围是多少 2020-07-29 …
求c程序设计大神将两个两位数的正整数a,b合并成一个整数放在c中.合并的方式是:将a的十位和个位数 2020-07-29 …
若x为任意实数时,二次三项式x2-6x+c的值都不小于0,则常数c满足的条件是()A.c≥0B.c 2020-08-02 …
SOSOSOSOSOS...数学(初中)1.若x为任意实数时,二次三项式x^2-6x+c的值都不小 2020-08-02 …
点A、B在数轴上表示的数分别为-12和16.(规定数轴上两点A、B之间的距离记为AB)(1)点C在 2020-08-03 …
如图,三点A,B,D在数轴上,点A,B在数轴上表示的数分别为-12,16.(1)点C在数轴上,满足A 2020-11-19 …
已知AB两点在数轴上表示的数是负5,1.在数轴上有一点C,满足AC等于2BC,则C点表示的数是已知A 2020-11-20 …