早教吧作业答案频道 -->数学-->
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l'与C相交于M,N两点,且A,M,B,N四点共圆,求l的方程
题目详情
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l'与C相交于M,N两点,且A,M,B,N四点共圆,求l的方程
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l'与C相交于M,N两点,且A,M,B,N四点共圆,求l的方程
▼优质解答
答案和解析
由题意可得,直线l和坐标轴不垂直,设l的方程为 x=my+1 (m≠0),
代入抛物线方程可得y2-4my-4=0,∴y1+y2=4m,y1•y2=-4.
∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=m2+1|y1-y2|=4(m2+1).
又直线l′的斜率为-m,∴直线l′的方程为 x=-1my+2m2+3.
过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,
把线l′的方程代入抛物线方程可得 y2+4my-4(2m2+3)=0,∴y3+y4=−4m,y3•y4=-4(2m2+3).
故线段MN的中点E的坐标为(2m2+2m2+3,−2m),∴|MN|=1+1m2|y3-y4|=4(m2+1)2m2+1m2,
∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=12|MN|,
∴14•AB2+DE2=14MN2,
∴4(m2+1)2+(2m+2m)2+(2m2+2)2=16(m2+1)2(2m2+1)m4,化简可得 m2-1=0,
∴m=±1,∴直线l的方程为 x-y-1=0,或 x+y-1=0.
代入抛物线方程可得y2-4my-4=0,∴y1+y2=4m,y1•y2=-4.
∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=m2+1|y1-y2|=4(m2+1).
又直线l′的斜率为-m,∴直线l′的方程为 x=-1my+2m2+3.
过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,
把线l′的方程代入抛物线方程可得 y2+4my-4(2m2+3)=0,∴y3+y4=−4m,y3•y4=-4(2m2+3).
故线段MN的中点E的坐标为(2m2+2m2+3,−2m),∴|MN|=1+1m2|y3-y4|=4(m2+1)2m2+1m2,
∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=12|MN|,
∴14•AB2+DE2=14MN2,
∴4(m2+1)2+(2m+2m)2+(2m2+2)2=16(m2+1)2(2m2+1)m4,化简可得 m2-1=0,
∴m=±1,∴直线l的方程为 x-y-1=0,或 x+y-1=0.
看了 已知抛物线C:y2=4x的焦...的网友还看了以下:
证明矢量a与矢量c*(b*a)-b*(c*a)垂直 2020-04-05 …
将下列式子写成(A+B)(A-B)的形式①(-a+b+c-d)(-a-b+c+d)②(a+b将下列 2020-04-27 …
如图所示是玩具陀螺的示意图,a、b和c是陀螺表面上的三个点,当陀螺绕垂直于地面的轴线oo'匀速旋转 2020-05-13 …
直角三角形的重心离长的一条直角边的距离是多少?设A=24厘米,B=90厘米,C=?.A垂直于B.请 2020-06-03 …
如图点F1(-c,0)F2(c,0)分别是椭圆C(a>b>0)的左右焦点,点F1(-c,0)F2 2020-06-21 …
已知二面角A——l——B,直线a属于A,b属于B且a与l不垂直,b与l不垂直,那么()A,a与b可 2020-06-27 …
用反证法证明“若a∥c,b∥c,则a∥b”,第一步应假设()A.a∥bB.a与b垂直C.a与b不一 2020-08-01 …
a、b是直线,α、β是平面,下列判断正确的是()A.a垂直于α内无数条直线,则a⊥αB.a⊥b,b⊥ 2020-11-02 …
已知点A(30,20,45)和B(30,30,35),则A与B的相对位置应是?A.A在B之前,在B之 2020-12-05 …
两个固定的等量异种电荷,在他们连线的垂直平分线上有a、b、c三点,如图所示,下列说法正确的是()A. 2020-12-05 …