早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求和:Sn=1a+2a2+3a3+…+nan(a≠0).

题目详情
求和:Sn=
1
a
+
2
a2
+
3
a3
+…+
n
an
(a≠0).
▼优质解答
答案和解析
当a=1时,Sn=1+2+3+…+n=
n(n+1)
2

当a≠1时,Sn=
1
a
+
2
a2
+
3
a3
+…+
n
an
,①
1
a
Sn=
1
a2
+
2
a3
+
3
a4
+…+
n
an+1
,②
①-②,得:(1−
1
a
)Sn=
1
a
+
1
a2
+…+
1
an
n
an+1

=
1
a
(1−
1
an
)
1−
1
a
-
n
an+1

∴Sn=
1
a
(1−
1
an
)
(1−
1
a
)2
n
an+1
1−
1
a

Sn=
n(n+1)
2
,a=1
1
a
(1−
1
an
)
(1−
1
a
)2
n
an+1
1−
1
a
,a≠1