早教吧作业答案频道 -->其他-->
如图,已知△ABC中,∠BAC、∠ABC的平分线交于O,AO交BC于D,BO交AC于E,连OC,过O作OF⊥BC于F.(1)试判断∠AOB与∠COF有何数量关系,并证明你的结论;(2)若∠ACB=60°,探究OE与OD的数量关系
题目详情

连OC,过O作OF⊥BC于F.
(1)试判断∠AOB与∠COF有何数量关系,并证明你的结论;
(2)若∠ACB=60°,探究OE与OD的数量关系,并证明你的结论.
▼优质解答
答案和解析
(1)∠AOB+∠COF=180°,
证明:过O作OM⊥AC于M,ON⊥AB于N,
∵AD平分∠CAB,BE平分∠CBA,OF⊥BC,
∴OM=ON,ON=OF,
∴OM=OF,
∴O在∠ACB的角平分线上,
∴∠OCF=
∠ACB,
∵OF⊥BC,
∴∠CFO=90°,
∴∠COF+∠OCF=90°,
∴∠COF=90°-∠OCF,①
∵AD平分∠CAB,BE平分∠CBA,
∴∠OAB=
∠CAB,∠OBA=
∠CBA,
∴∠AOB=180°-(∠OAB+∠OBA)
=180°-
(∠CAB+∠CBA)
=180°-
(180°-∠ACB)
=90°+
∠ACB
=90°+∠OCF,②
由①②得:∠AOB+∠COF=90°+∠OCF+90°-∠OCF=180°;
(2)OE=OD,
证明:∵∠ACB=60°,
∴由(1)知:∠AOB=90°+
∠ACB=90°+30°=120°,
∴∠EOD=∠AOB=120°,
∵OM⊥AC.OF⊥BC,
∴∠OME=∠OFD=90°,∠CMO=∠CFO=90°,
∴∠MOF=360°-90°-90°-60°=120°,
∴∠MOE=∠DOF=120°-∠MOD,
在△EOM和△DOF中
∴△EOM≌△DOF(AAS),
∴OE=OD.

证明:过O作OM⊥AC于M,ON⊥AB于N,
∵AD平分∠CAB,BE平分∠CBA,OF⊥BC,
∴OM=ON,ON=OF,
∴OM=OF,
∴O在∠ACB的角平分线上,
∴∠OCF=
1 |
2 |
∵OF⊥BC,
∴∠CFO=90°,
∴∠COF+∠OCF=90°,
∴∠COF=90°-∠OCF,①
∵AD平分∠CAB,BE平分∠CBA,
∴∠OAB=
1 |
2 |
1 |
2 |
∴∠AOB=180°-(∠OAB+∠OBA)
=180°-
1 |
2 |
=180°-
1 |
2 |
=90°+
1 |
2 |
=90°+∠OCF,②
由①②得:∠AOB+∠COF=90°+∠OCF+90°-∠OCF=180°;
(2)OE=OD,
证明:∵∠ACB=60°,
∴由(1)知:∠AOB=90°+
1 |
2 |
∴∠EOD=∠AOB=120°,
∵OM⊥AC.OF⊥BC,
∴∠OME=∠OFD=90°,∠CMO=∠CFO=90°,
∴∠MOF=360°-90°-90°-60°=120°,
∴∠MOE=∠DOF=120°-∠MOD,
在△EOM和△DOF中
|
∴△EOM≌△DOF(AAS),
∴OE=OD.
看了 如图,已知△ABC中,∠BA...的网友还看了以下:
以RT△ABC的直角边AB为直径作圆O,与斜边AC交于点D,过点D作圆O的切线交BC于点E,连接O 2020-05-21 …
如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O 2020-07-09 …
三角形ABC为园O的内接三角形,AD为三角形BAC的角平分线,交园O与D,交BC与E,MN//BC 2020-07-22 …
⊙O与⊙O1相交于A、B,R、r分别为⊙O与⊙O1的半径,且R>r.(1)C在⊙O1上,且是⊙O1 2020-07-31 …
圆O与圆O'相交与A,B两点,过点B作CD垂直于AB,分别交圆O与圆O'于点C.D.(1)求证:A 2020-07-31 …
1.点P为圆O外一点,PS、PT是两条切线,过点P作圆O的割线PAB,交圆O于A,B两点,与ST交 2020-07-31 …
问题情境:在学完2.4节圆周角之后,老师出了这样一道题:如图1,已知点A为∠MPN的平分线PQ上的 2020-08-01 …
(2013•随州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O与点D,过点D的切 2020-11-12 …
已知AB为圆的直径,CD垂直AB与圆交于C,垂足为D,以C为圆心,CD为半径作圆与前圆交于EF,EF 2020-11-27 …
如图,已知⊙O和⊙O′相交于A、B两点,过点A作⊙O′的切线交⊙O于点C,过点B作两圆的割线分别交⊙ 2020-12-05 …