早教吧作业答案频道 -->数学-->
如图1,已知直线y=-2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.(l)当点C与点O重合时,DE=;(2)当CE∥OB时,证明此时四边形BDC
题目详情
如图1,已知直线y=-2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE=______;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.

(l)当点C与点O重合时,DE=______;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.

▼优质解答
答案和解析
∵直线AB的解析式为y=-2x+4,
∴点A的坐标为(2,0),点B的坐标为(0,4),即可得OB=4,OA=2,
(1)当点C与点O重合时如图所示,

∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=
OA=1;
(2)当CE∥OB时,如图所示:

∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=
OB=2;
当点C与点A重合时,OD取得最小值,如图所示:

在Rt△AOB中,AB=
=2
,
∵DE垂直平分BC(BA),
∴BE=
BA=
,
易证△BDE∽△BAO,
∴
=
,即
=
,
解得:BD=
,
则OD=OB-BD=4-
=
.
综上可得:
≤OD≤2.
∴点A的坐标为(2,0),点B的坐标为(0,4),即可得OB=4,OA=2,
(1)当点C与点O重合时如图所示,

∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=
1 |
2 |
(2)当CE∥OB时,如图所示:

∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=
1 |
2 |
当点C与点A重合时,OD取得最小值,如图所示:

在Rt△AOB中,AB=
OA2+OB2 |
5 |
∵DE垂直平分BC(BA),
∴BE=
1 |
2 |
5 |
易证△BDE∽△BAO,
∴
BE |
BO |
BD |
AB |
| ||
4 |
BD | ||
2
|
解得:BD=
5 |
2 |
则OD=OB-BD=4-
5 |
2 |
3 |
2 |
综上可得:
3 |
2 |
看了 如图1,已知直线y=-2x+...的网友还看了以下:
已知a>b>c,曲线C上任意一点P分别与点A(-a,0)、B(a,0)连线的斜率的乘积为-b^2/ 2020-04-27 …
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,s两点,点P(0,k)是 2020-05-16 …
过点P(2,1)作直线L分别与x,y轴正半轴交于A,B两点.(1)当△AOB面积最小时,求直线L的 2020-06-17 …
在△ABC中,∠ACB=90°.经过点B的直线l(l不与直线AB重合)与直线BC的夹角等于∠ABC 2020-07-22 …
点A、B位于直线l的同侧,A、B关于直线l的对称点分别为点A'、B',点P在直线l上.当PA+PB 2020-08-01 …
如图,点P在直线l外,以点P为圆心,大于点P到直线l的距离为半径画弧,交直线l于点A、B;保持半径 2020-08-01 …
已知直线l:4x+3y+12=0,与x、y轴分别交于A、B两点,O为坐标原点.(1)求△ABO的面积 2020-11-04 …
(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,-1)两点,并与直线 2020-11-13 …
已知函数Y=X+3与Y轴分别交与A,B两点直线L过原点且与线段AB交与点C并把三角形AOB的面积分为 2021-01-10 …
1过点P(-1,2)的直线l与x轴和y轴分别交与A,B两点.若点P恰为线段AB的中点,求直线l的斜率 2021-01-10 …