早教吧作业答案频道 -->数学-->
(2009•永嘉县二模)如图,Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.(1)求证:△BPM∽△BAC;(2)求y与x的
题目详情
(2009•永嘉县二模)如图,Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.
(1)求证:△BPM∽△BAC;
(2)求y与x的函数关系式,并确定当x在什么范围内取值时,⊙P与AC所在直线相离;
(3)当点P从点C向点B移动时,是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x、y的值;若不存在,请说明理由.

(1)求证:△BPM∽△BAC;
(2)求y与x的函数关系式,并确定当x在什么范围内取值时,⊙P与AC所在直线相离;
(3)当点P从点C向点B移动时,是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x、y的值;若不存在,请说明理由.

▼优质解答
答案和解析
(1)证明:∵AB切⊙P于点M,
∴∠PMB=∠C=90°.
又∵∠B=∠B,
∴△BPM∽△BAC.
(2)∵AC=3,BC=4,∠C=90°,
∴AB=5.
∵
=
,
∴
=
,
∴y=−
x+
(0≤x<4).
当x>y时,⊙P与AC所在的直线相离.
即x>−
x+
,
得x>
,
∴当
<x<4时,⊙P与AC所在的直线相离.
(3)设存在符合条件的⊙P.
得OP=2.5-y,而BM=
y,
∴OM=2.5−
y,
有(2.5−
y)2+y2=(2.5−y)2,
得
y2−
y=0
∴y1=0(不合题意舍去),y2=
.
∴y=
时,x=
.

∴∠PMB=∠C=90°.
又∵∠B=∠B,
∴△BPM∽△BAC.
(2)∵AC=3,BC=4,∠C=90°,
∴AB=5.
∵
BP |
BA |
PM |
AC |
∴
4−x |
5 |
y |
3 |
∴y=−
3 |
5 |
12 |
5 |
当x>y时,⊙P与AC所在的直线相离.
即x>−
3 |
5 |
12 |
5 |
得x>
3 |
2 |
∴当
3 |
2 |
(3)设存在符合条件的⊙P.
得OP=2.5-y,而BM=
4 |
3 |
∴OM=2.5−
4 |
3 |
有(2.5−
4 |
3 |
得
16 |
9 |
5 |
3 |
∴y1=0(不合题意舍去),y2=
15 |
16 |
∴y=
15 |
16 |
39 |
16 |
看了 (2009•永嘉县二模)如图...的网友还看了以下:
如图1,正方形ABCD的边长为4,点P为线段AD上的一动点,以BP为直径作半圆,圆心为O,线段OF∥ 2020-03-30 …
在△ABC中,AB=5cm,BC=4cm,AC=3cm(1)若以C为圆心,2cm长为半径画⊙C,则 2020-04-26 …
如图,正方形ABCD的边长为4cm,以正方形的边BC为直径在正方形内作半圆,再过A点作半圆的切线A 2020-05-16 …
一个半圆与一个圆心角为45°的扇形重叠在一起;扇形的一条半径与半圆O的直径AB重合,另一条半径BC 2020-07-21 …
已知AB是半圆O的直径,点C在BA的延长线上运动(点C与点A不重合),以OC为直径的半圆M与半圆O 2020-07-24 …
(2002•浙江)如图,已知半圆O的直径AB=10,⊙O1与半圆O内切干点C,与AB相切干点D,( 2020-07-31 …
如图,扇形OAB的圆心角为90°,以OB为直径的半圆O1与半圆O2外切,且⊙O1与⊙O2都与扇形弧 2020-08-01 …
已知AB是半圆O的直径,点C在BA的延长线上运动(点C与点A不重合),以OC为直径的半圆M与半圆交与 2020-11-26 …
如图,扇形OAB的圆心角为90°,以OB为直径的半圆O1与半圆O2外切,且⊙O1与⊙O2都与扇形弧相 2020-11-26 …
如图AOB是半径为1的单位圆的14,半圆O1与半圆O2相切且与AB内切于A、B,O1,O2分别在OA 2020-11-26 …