早教吧作业答案频道 -->数学-->
19.设A,B为圆x*2+y*2=1上两点,O为坐标原点(A,O,B不共线)(1)求证:向量OA+向量OB与向量OA-向量OB垂直20.(09湖南卷)在△ABC,已知2向量AB*向量AC=√3|向量AB|*|向量AC|=3BC*2,求角A,B,C的大小12.已知/a
题目详情
19.设A,B为圆x*2+y*2=1上两点,O为坐标原点(A,O,B不共线)(1)求证:向量OA+向量OB与向量OA-向量OB垂直
20.(09湖南卷)在△ABC,已知2向量AB*向量AC=√3|向量AB|*|向量AC|=3BC*2,求角A,B ,C的大小
12.已知/a向量/=2,/b向量/≠0,且关于x的方程x2+/a向量/x+ a向量* b向量有实根,则a向量与 b向量夹角的范围-----------------
20.(09湖南卷)在△ABC,已知2向量AB*向量AC=√3|向量AB|*|向量AC|=3BC*2,求角A,B ,C的大小
12.已知/a向量/=2,/b向量/≠0,且关于x的方程x2+/a向量/x+ a向量* b向量有实根,则a向量与 b向量夹角的范围-----------------
▼优质解答
答案和解析
第一个问题:
∵A、B在圆x^2+y^2=1上,∴可设A、B的坐标分别是(cosa,sina),(cosb,sinb).
∴向量OA=(cosa,sina),向量OB=(cosb,sinb).
∴向量OA+向量OB=(cosa+cosb,sina+sinb),
向量OA-向量OB=(cosa-cosb,sina-sinb).
∴(向量OA+向量OB)·(向量OA-向量OB)
=(cosa+cosb)(cosa-cosb)+(sina+sinb)(sina-sinb)
=(cosa)^2-(cosb)^2+(sina)^2-(sinb)^2=1-1=0
∴(向量OA+向量OB)⊥(向量OA-向量OB).
第二个问题:
由2向量AB·向量AC=√3|向量AB|·|向量AC|,
得:向量AB·向量AC/(|向量AB|·|向量AC|)=√3/2,
而cosA=向量AB·向量AC/(|向量AB|·|向量AC|),∴cosA=√3/2,∴A=30°.
由√3|向量AB|·|向量AC|=3BC^2,结合正弦定理,有:
√3|sinC||sinB|=3(sinA)^2=3×(sin30°)^2=3/4, ∴|2sinBsinC|=√3/2,
在△ABC中,显然有:sinB>0,sinC>0,∴2sinBsinC=√3/2,
∴cos[B-(180°-A-B)]-cos(B+C)=√3/2,
∴cos(-180°-30°+2B)+cosA=√3/2, ∴cos[180°-(2B-30°)]+cos30°=√3/2,
∴-cos(2B-30°)+√3/2=√3/2,∴cos(2B-30°)=0,∴2B-30°=90°,∴B=60°.
由A=30°,B=60°,得:C=90°.于是:C>B>A.
第三个问题:
题目中给定的方程应该是 x^2+|向量a|x+向量a·向量b=0 吧!即便是这样,仍然是条件不足,无法解决.请你核查题目.
∵给定的方程有实数根,∴方程的判别式不小于0,即:|向量a|^2-4向量a·向量b≧0,
∴向量a·向量b≦|向量a|^2/4=4/4=1.
令向量a与向量b的夹角为θ,则:
cosθ=(向量a·向量b)/(|向量a||向量b|)≦1/(2|向量b|)
∵|向量b|的取值无法确定,∴cosθ的范围就无法确定.
∵A、B在圆x^2+y^2=1上,∴可设A、B的坐标分别是(cosa,sina),(cosb,sinb).
∴向量OA=(cosa,sina),向量OB=(cosb,sinb).
∴向量OA+向量OB=(cosa+cosb,sina+sinb),
向量OA-向量OB=(cosa-cosb,sina-sinb).
∴(向量OA+向量OB)·(向量OA-向量OB)
=(cosa+cosb)(cosa-cosb)+(sina+sinb)(sina-sinb)
=(cosa)^2-(cosb)^2+(sina)^2-(sinb)^2=1-1=0
∴(向量OA+向量OB)⊥(向量OA-向量OB).
第二个问题:
由2向量AB·向量AC=√3|向量AB|·|向量AC|,
得:向量AB·向量AC/(|向量AB|·|向量AC|)=√3/2,
而cosA=向量AB·向量AC/(|向量AB|·|向量AC|),∴cosA=√3/2,∴A=30°.
由√3|向量AB|·|向量AC|=3BC^2,结合正弦定理,有:
√3|sinC||sinB|=3(sinA)^2=3×(sin30°)^2=3/4, ∴|2sinBsinC|=√3/2,
在△ABC中,显然有:sinB>0,sinC>0,∴2sinBsinC=√3/2,
∴cos[B-(180°-A-B)]-cos(B+C)=√3/2,
∴cos(-180°-30°+2B)+cosA=√3/2, ∴cos[180°-(2B-30°)]+cos30°=√3/2,
∴-cos(2B-30°)+√3/2=√3/2,∴cos(2B-30°)=0,∴2B-30°=90°,∴B=60°.
由A=30°,B=60°,得:C=90°.于是:C>B>A.
第三个问题:
题目中给定的方程应该是 x^2+|向量a|x+向量a·向量b=0 吧!即便是这样,仍然是条件不足,无法解决.请你核查题目.
∵给定的方程有实数根,∴方程的判别式不小于0,即:|向量a|^2-4向量a·向量b≧0,
∴向量a·向量b≦|向量a|^2/4=4/4=1.
令向量a与向量b的夹角为θ,则:
cosθ=(向量a·向量b)/(|向量a||向量b|)≦1/(2|向量b|)
∵|向量b|的取值无法确定,∴cosθ的范围就无法确定.
看了 19.设A,B为圆x*2+y...的网友还看了以下:
已知a=(tan,-1),b=(1,-2)若(a+b)(a-b)则tan已知向量a=(tanx,- 2020-04-27 …
1.若a的模等于1,b的模等于2,c向量等于a向量加b向量.且c向量垂直于a向量,则向量a与向量b 2020-05-14 …
已知平面向量a=(√3,-1)b=(1/2,√3/2)若存在不同时为零的实数k和t,使向量x=向量 2020-05-16 …
1、设A(0,1),B(2,4),C(-3,-1),且向量AB=向量CD,求点D坐标2、设向量a= 2020-07-18 …
1、已知向量a的模=2,向量b的模=1,向量a与向量b的夹角为∏/3,求向量2a+3b与3a-2b 2020-07-29 …
1.已知向量a=(2,4),向量b=(-1,2),若向量c=向量a-(向量a*向量b)*向量b,求 2020-08-01 …
向量(1220:5:24)已知向量a,b,c满足:向量a+向量b+向量c=0向量,且|a|=1,| 2020-08-01 …
一道集合的数学题已知P={A向量|A向量=(1,0)+M(0,1),M属于R}Q={B向量|B向量 2020-08-02 …
高一向量两道小题,在线求解1、已知向量a,b,c满足a+b+c=0,模分别为a=1,b=√2,c= 2020-08-02 …
已知向量a和向量b是两个非零向量,且(向量a-向量b)垂直向量a,(向量b-2向量a)垂直于向量b, 2021-02-05 …