早教吧作业答案频道 -->数学-->
1.求根号下(a^2-x^2)^3的积分,所有内容都在根号内.2.(x+1)/(x^2+x+1)的积分
题目详情
1.求根号下(a^2-x^2)^3的积分,所有内容都在根号内.2.(x+1)/(x^2+x+1)的积分
▼优质解答
答案和解析
1,
令x=asint,则dx=acostdt
代入原式有
∫√(a^2-x^2)^3dt
=∫a^4(cost)^4dt
= a^4∫[(1+cos2t)/2]^2dt
= a^4/4∫[1+2cos2t+(1+cos4t)/2]dt
= a^4/4∫(3/2+2cos2t+1/2*cos4t)dt
= a^4/4(∫3/2dt+2∫cos2tdt+1/2∫cos4tdt)
= a^4/4(3t/2+sin2t+1/8*sin4t)+C
= a^4/4[3/2*arcsin(x/a)+2x√(a^2-x^2)/a^2+x(a^2-2x^2)√(a^2-x^2)/2a^4]+C
=3/8* arcsin(x/a) a^4+ 1/2*x√(a^2-x^2)a^2+1/8* x(a^2-2x^2)√(a^2-x^2)+C
2
∫(x+1)/(x^2+x+1)dx
=1/2∫(2x+2)/(x^2+x+1)dx
=1/2∫(2x+1)/(x^2+x+1)dx+1/2∫1/(x^2+x+1)dx
=1/2∫1/(x^2+x+1)d(x^2+x+1)+1/2∫1/[(x+1/2)^2+3/4)]dx
=1/2*ln(x^2+x+1)+ √3/3∫1/{[2/√3*(x+1/2)]^2]+1}d[2/√3*(x+1/2)]
=1/2*ln(x^2+x+1)+ √3/3arctan[2/√3*(x+1/2)]+C
令x=asint,则dx=acostdt
代入原式有
∫√(a^2-x^2)^3dt
=∫a^4(cost)^4dt
= a^4∫[(1+cos2t)/2]^2dt
= a^4/4∫[1+2cos2t+(1+cos4t)/2]dt
= a^4/4∫(3/2+2cos2t+1/2*cos4t)dt
= a^4/4(∫3/2dt+2∫cos2tdt+1/2∫cos4tdt)
= a^4/4(3t/2+sin2t+1/8*sin4t)+C
= a^4/4[3/2*arcsin(x/a)+2x√(a^2-x^2)/a^2+x(a^2-2x^2)√(a^2-x^2)/2a^4]+C
=3/8* arcsin(x/a) a^4+ 1/2*x√(a^2-x^2)a^2+1/8* x(a^2-2x^2)√(a^2-x^2)+C
2
∫(x+1)/(x^2+x+1)dx
=1/2∫(2x+2)/(x^2+x+1)dx
=1/2∫(2x+1)/(x^2+x+1)dx+1/2∫1/(x^2+x+1)dx
=1/2∫1/(x^2+x+1)d(x^2+x+1)+1/2∫1/[(x+1/2)^2+3/4)]dx
=1/2*ln(x^2+x+1)+ √3/3∫1/{[2/√3*(x+1/2)]^2]+1}d[2/√3*(x+1/2)]
=1/2*ln(x^2+x+1)+ √3/3arctan[2/√3*(x+1/2)]+C
看了 1.求根号下(a^2-x^2...的网友还看了以下:
高等数学题目求解当X=时1/x无穷小,1/X无穷大当X=时1/SINX无穷小,SINx~x常数0不 2020-05-14 …
已知fn(x)=(1+x)n,(x≠0且x≠-1,n∈N*)(1)设g(x)=f3(x)+f4(x 2020-05-17 …
填空:分式的约分和通分约分:-16b^2y^2/20ay^3=-1-x/x^2+2x+1=a^y- 2020-06-06 …
.已知f(x+1/x)=x^2+1/x^2,求f(x)的解析式.答案是这个f(x+1/x)=x²+ 2020-06-14 …
1.x^2-7xy+12y^22.(a-b)^2+11(a-b)+283.(x+y)^2-(x+y 2020-07-19 …
一元一次不等式组(1){x+2≥0,3x-1/2<2x+1/3(2){2/5(3-x)+2<-2, 2020-07-29 …
给出如下方程的区间,其中所给方程在所给区间上有实数解的是1.x^3-x-1=0,[0,1]2.lo 2020-08-02 …
初一数学问题,急!在线等!1.计算:1/x(x+1)+1/(x+1)(x+2)+...+1/(x+4 2020-10-31 …
怎么证明:1+x^4>x+x^3能证明吗……原题是:若实数x不等于1,求证3(1+x^2+x^4)> 2020-12-09 …
关于因式分解1.已知4x^2+4x+1=m(x+n)^2,则m=,n=.2.已知x^2-x+1=0, 2021-02-02 …