早教吧作业答案频道 -->数学-->
已知函数f(x)=ke^x-x^2(其中k属于Re为自然对数的底数)(1)若K=-2,判断f(x)在区间(0,正无穷)上的单调性(2)若函数f(x)有两个极值点x1,x2(x1小于x2),求K的取值范围,并证明0小于f(x)小于1
题目详情
已知函数f(x)=ke^x-x^2(其中k属于R e为自然对数的底数) (1)若K=-2,判断f
(x)在区间(0,正无穷)上的单调性
(2)若函数f(x)有两个极值点x1,x2(x1小于x2),求K的取值范围,并证明0小于f(x)小于1
(x)在区间(0,正无穷)上的单调性
(2)若函数f(x)有两个极值点x1,x2(x1小于x2),求K的取值范围,并证明0小于f(x)小于1
▼优质解答
答案和解析
f'(x)=ke^x-2x
1)由於k0时,f'(x)恒小於0,单调递减
2)
k=2
f(x)=2e^x-x^2
f(0)=2
f'(x)=2e^x-2x
=2(e^x-x)
g(x)=e^x
h(x)=x
g'(x)=e^x
h'(x)=1
在x正半轴
g'(x)>=h'(x)
g(0)=1,h(0)=0
且g(0)>h(0)
故g(x)>h(x)
在x正半轴上
故e^x-x>0
f'(x)=2(e^x-x)>0
f'(x)在正半轴恒大於0,f(x)单调递增
f(0)=2
所以x>0时f(x)>2
3)
ke^x=2x时有极值
有两个极值
也就是说函数p(x)=ke^x和q(x)=2x有两个交点
先考虑k>0时
ke^x有一点斜率为2
且这点坐标为 x,2x时
p(x)=ke^x和q(x)=2x相切
p'(x)=ke^x=2
p(x)=ke^x=2x
此时x=1
ke=2
k=2/e
当p(x)函数值减小,那麼和q(x)=2x有两个交点
也就是k0
----------------------------------------
又
k
1)由於k0时,f'(x)恒小於0,单调递减
2)
k=2
f(x)=2e^x-x^2
f(0)=2
f'(x)=2e^x-2x
=2(e^x-x)
g(x)=e^x
h(x)=x
g'(x)=e^x
h'(x)=1
在x正半轴
g'(x)>=h'(x)
g(0)=1,h(0)=0
且g(0)>h(0)
故g(x)>h(x)
在x正半轴上
故e^x-x>0
f'(x)=2(e^x-x)>0
f'(x)在正半轴恒大於0,f(x)单调递增
f(0)=2
所以x>0时f(x)>2
3)
ke^x=2x时有极值
有两个极值
也就是说函数p(x)=ke^x和q(x)=2x有两个交点
先考虑k>0时
ke^x有一点斜率为2
且这点坐标为 x,2x时
p(x)=ke^x和q(x)=2x相切
p'(x)=ke^x=2
p(x)=ke^x=2x
此时x=1
ke=2
k=2/e
当p(x)函数值减小,那麼和q(x)=2x有两个交点
也就是k0
----------------------------------------
又
k
看了 已知函数f(x)=ke^x-...的网友还看了以下:
集合A={x∈R|x=a+b根号2,a∈Z,b∈Z} 判断元素x与集合A的关系,(1)X=x1+x 2020-04-05 …
若定义在[0,1]上的函数f(x)同时满足:①f(x)≥0;②f(1)=1;③若x1≥0,x2≥0 2020-06-27 …
已知函数f(x)=xn−4x,且f(4)=3.(1)判断f(x)的奇偶性并说明理由;(2)判断f( 2020-07-12 …
设f(x),g(x)在(-∞,+∞)上有定义,且x=x1是f(x)的唯一间断点,x=x2是g(x) 2020-07-22 …
若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f 2020-11-02 …
二重积分如何判断先对x还是y积分比如像更换二重积分的积分次序∫1/20dx∫1-2x0f(x,y)d 2020-12-05 …
函数f(x)的定义域关于原点对称,但不包括数0,对定义域中的任意实数x,在定义域中存在x1、x2使x 2020-12-08 …
如果定义在[0,1]上的函数f(x)满足:若对任意x1,x2∈[0,1],且x1≠x2,都有|f(x 2020-12-08 …
已知函数g(x)=−(12)x2的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).(1) 2020-12-08 …
有三个推断:(1)∵x≠0,∴x+1x≥2,∴x+1x的最小值为2;(2)∵x2+1≥2x(x=1时 2020-12-28 …