早教吧作业答案频道 -->数学-->
如图1,直线AB∥CD,点P在两平行线之间,点E在AB上,点F在CD上,连结PE,PF.(1)若∠PEB=60°,∠PFD=50°,请求出∠EPF.(请写出必要的步骤说明理由)(2)如图2,若点P、Q在直线AB与CD
题目详情
如图1,直线AB∥CD,点P在两平行线之间,点E在AB上,点F在CD上,连结PE,PF.
(1)若∠PEB=60°,∠PFD=50°,请求出∠EPF.(请写出必要的步骤说明理由)

(2)如图2,若点P、Q在直线AB与CD之间时,∠1=30°,∠2=40°,∠3=70°,请求出∠4=___.(不需说明理由,请直接写出答案)
(3)如图3,在图1基础上,作P1E平分∠PEB,P1F平分∠PFD,若设∠PEB=x°,∠PFD=y°.则∠P1=___(用x,y的代数式表示),若P2E平分∠P1EB,P2F平分∠P1FD,可得∠P2,P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3…,依次平分下去,则∠Pn=___.
(4)在一次综合实践活动课上,张开同学制作了一个图5的“回旋镖”,经测量发现∠PAC=38°,∠PBC=22°,他很想知道∠APB与∠C的数量关系,你能告诉他吗?请你直接写出答案:___.
(1)若∠PEB=60°,∠PFD=50°,请求出∠EPF.(请写出必要的步骤说明理由)

(2)如图2,若点P、Q在直线AB与CD之间时,∠1=30°,∠2=40°,∠3=70°,请求出∠4=___.(不需说明理由,请直接写出答案)
(3)如图3,在图1基础上,作P1E平分∠PEB,P1F平分∠PFD,若设∠PEB=x°,∠PFD=y°.则∠P1=___(用x,y的代数式表示),若P2E平分∠P1EB,P2F平分∠P1FD,可得∠P2,P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3…,依次平分下去,则∠Pn=___.
(4)在一次综合实践活动课上,张开同学制作了一个图5的“回旋镖”,经测量发现∠PAC=38°,∠PBC=22°,他很想知道∠APB与∠C的数量关系,你能告诉他吗?请你直接写出答案:___.
▼优质解答
答案和解析
(1)如图1,

过点P作PH∥AB∥CD
∴∠1=∠EPH,∠2=∠FPH
而∠EPF=∠EPH+∠FPH
∴∠EPF=∠1+∠2=110°;
(2)∠4=80°,(3)∠P1=
(x+y)°(用x,y的代数式表示)
∠Pn=(
)n(x+y)°.
(4)∠APB=∠C+60°.理由如下:
过A、B分别作直线AE、BF,使AE∥BF.如图,

由(1)规律可知∠C=∠1+∠2.
∠APB=∠PAE+∠PBF
=(∠PAC+∠1)+(∠PBC+∠2)
=∠PAC+∠PBC+(∠1+∠2)
=∠C+60°.

过点P作PH∥AB∥CD
∴∠1=∠EPH,∠2=∠FPH
而∠EPF=∠EPH+∠FPH
∴∠EPF=∠1+∠2=110°;
(2)∠4=80°,(3)∠P1=
1 |
2 |
∠Pn=(
1 |
2 |
(4)∠APB=∠C+60°.理由如下:
过A、B分别作直线AE、BF,使AE∥BF.如图,

由(1)规律可知∠C=∠1+∠2.
∠APB=∠PAE+∠PBF
=(∠PAC+∠1)+(∠PBC+∠2)
=∠PAC+∠PBC+(∠1+∠2)
=∠C+60°.
看了 如图1,直线AB∥CD,点P...的网友还看了以下:
概率题急求解1设A,B为随机事件且P(A)=0.7,P(A-B)=0.3,求P(A非B非).2设A 2020-04-12 …
a、b是常数,关于x的一元二次方程x2+(a+b)x+3+ab2=0有实数解记为事件A.(1)若a 2020-05-13 …
P(A)=3/4,P(B)=5/6的条件下求P(A∩B)P(A)=3/4,P(B)=5/6的条件下 2020-05-19 …
指出下列各组条件中,条件p是结论q的什么条件(1)p:ab>o,q:/a/>/b/(4)p:整数a 2020-06-12 …
数三全书概率论P415的例1.2设事件A,B和A∪B的概率分别为0.2,0.3和0.4,则P(A∪ 2020-06-13 …
若P(A)=0.6,P(B)=0.8,P(A∪B)最大值为1,最小值为0.8,为什么?还有就是P( 2020-06-14 …
把下列各式化成(a-b)^p的形式Ⅰ15(a-b)³[-6(a-b)^(q+5)](b-a)²是不 2020-07-18 …
指出下列各组条件中,条件p是结论q的什么条件(1)p:ab>o,q:/a/>/b/(4)p:整数a 2020-07-30 …
条件概率公式问题感觉平时P(A)*P(B)才=P(AB),也就比方说,甲射击中为1/3,乙为1/2, 2020-11-21 …
已知p(A)=0.6,p(B)=0.6,且A,B相互独立,求:(1)p(A+B);(2)p(非A|A 2020-12-01 …