HeneverdreamedofforhimtowinascholarshipofanAmericanuniversity.()A.therewerechancesB.therebeingachanceC.itbeingachanceD.itwasachance
He never dreamed of ______ for him to win a scholarship of an American university.( )
A. there were chances
B. there being a chance
C. it being a chance
D. it was a chance
He never dreamed of ______ for him to win a scholarship of an American university.( )
He never dreamed of ______ for him to win a scholarship of an American university.( )A. there were chances
B. there being a chance
C. it being a chance
D. it was a chance
题干中dream of梦想,后接名词;there be结构,表示存在;dream of后不能接句子,要用名词或相当于名词的短语;句意表达的是有机会,要用there be结构的非谓语形式.故选B.
证明lim(h→0)[f(x0+h)+f(x0-h)-2f(x0)]/h^2=f’’(x0)已知f 2020-05-17 …
请问氢键是怎么判断的?是不是一定要H-F,H-N和H-O才算是氢键.如果C-F这个不是真的键,是2 2020-05-21 …
变限积分求道问题对函数f(t+h)-f(t-h)在[-h,h]上的积分对h求导.F(h)=∫[-h 2020-05-23 …
有关系模式P(H,I,J,K,L),根据语义有如下函数依赖集,下列属性组中的()是关系P的候选码。F 2020-05-24 …
已知函数.其中.(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距 2020-07-21 …
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2 2020-08-01 …
f(x)=sinx,求f(1+h),[f(1+h)-f(1)]/h根据和差化积公式:sinα-si 2020-08-02 …
求导不同思路引起的不同结果习题:设f(x)的二阶导数存在,求lim[f(x+2h)-2f(x+h)+ 2020-11-03 …
导数运算求函数f(x)在x0处可求导,试求下列个极限的值LIMH→0f(x0+h)-f(x0-h)/ 2020-11-20 …
在以下性质的比较中,正确的是()A.微粒半径:Li+<O2-<F-<Na+B.电负性:F>N>O>C 2020-11-26 …