早教吧作业答案频道 -->数学-->
已知x+y+z=7,xy+yz+zx=14,xyz=8,求x²+y²+z²;2)x³+y³+z³;3)x²y²+y²z²+z²x²:4)(x+y)(y+z)(z+x)
题目详情
已知x+y+z=7,xy+yz+zx=14,xyz=8,
求x²+y²+z²;2)x³+y³+z³;3)x²y²+y²z²+z²x²:4)(x+y)(y+z)(z+x)
求x²+y²+z²;2)x³+y³+z³;3)x²y²+y²z²+z²x²:4)(x+y)(y+z)(z+x)
▼优质解答
答案和解析
1、x,y,z可以看作方程a^3-7a^2+14a^2-8=0的跟,可求的x,y,z为1,2,4.带入即可.
2、也可以按照下面的思路
x²+y²+z²=(x+y+z)^2-2(xy+yz+zx)=49-28=21.
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)
98=(x+y+z)(xy+yz+zx)=x^2(y+z)+xyz+y^2(x+z)+xyz+z^2(x+y)+xyz=x^2(y+z)+y^2(x+z)+z^2(x+y)+3*8
x^2(y+z)+y^2(x+z)+z^2(x+y)=74
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)=21*7-74=73
x²y²+y²z²+z²x²=(xy+yz+zx)^2-2(x+y+z)xyz=14^2-2*7*8=84
(x+y)(y+z)(z+x)=2xyz+x^2(y+z)+y^2(x+z)+z^2(x+y)=16+74=90
2、也可以按照下面的思路
x²+y²+z²=(x+y+z)^2-2(xy+yz+zx)=49-28=21.
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)
98=(x+y+z)(xy+yz+zx)=x^2(y+z)+xyz+y^2(x+z)+xyz+z^2(x+y)+xyz=x^2(y+z)+y^2(x+z)+z^2(x+y)+3*8
x^2(y+z)+y^2(x+z)+z^2(x+y)=74
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)=21*7-74=73
x²y²+y²z²+z²x²=(xy+yz+zx)^2-2(x+y+z)xyz=14^2-2*7*8=84
(x+y)(y+z)(z+x)=2xyz+x^2(y+z)+y^2(x+z)+z^2(x+y)=16+74=90
看了 已知x+y+z=7,xy+y...的网友还看了以下:
已知x^y=y^x,求y的导数。令F[x,y(x)]=x^y-y^x=o有两种方法,一种是求复合函 2020-05-14 …
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
把下列各式分解因式:(x+y)^2-(x+y)^3要写过程哦1:(x+y)^2-(x+y)^3=2 2020-06-27 …
把下列各式化成(x-y)的n次方(x-y)³×(y-x)²×(x-y)(x-y)×(x-y)的4次 2020-07-18 …
doublex=0;doubley=0;doublexd=-0.3146;doubleyd=0.2 2020-07-23 …
1.(x+y)dx+xdy=02.(y+xlny)y'=ylny3.yy''+(y')^2-y'=0 2020-10-31 …
已知正实数x,y满足x+y+1/x+9/y=10,则x+y的最大最小值是多少?有一步看不懂(x+y) 2020-10-31 …
{x^2+y^2=12x+y=5{x^2-y^2+x-y-6=0x^2-y^2-x+y-4=0{x^ 2020-10-31 …
用隐函数求导法则对x^y=y^x求导为什么会得出x^2=y^2x^y=y^x用隐函数求导法则yx^( 2020-10-31 …
为什么方法不一样答案不一样求xy=e^(x+y)的导数方法一两边取对数lnx+lny=x+y求导(1 2020-11-06 …