早教吧作业答案频道 -->数学-->
已知x+y+z=7,xy+yz+zx=14,xyz=8,求x²+y²+z²;2)x³+y³+z³;3)x²y²+y²z²+z²x²:4)(x+y)(y+z)(z+x)
题目详情
已知x+y+z=7,xy+yz+zx=14,xyz=8,
求x²+y²+z²;2)x³+y³+z³;3)x²y²+y²z²+z²x²:4)(x+y)(y+z)(z+x)
求x²+y²+z²;2)x³+y³+z³;3)x²y²+y²z²+z²x²:4)(x+y)(y+z)(z+x)
▼优质解答
答案和解析
1、x,y,z可以看作方程a^3-7a^2+14a^2-8=0的跟,可求的x,y,z为1,2,4.带入即可.
2、也可以按照下面的思路
x²+y²+z²=(x+y+z)^2-2(xy+yz+zx)=49-28=21.
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)
98=(x+y+z)(xy+yz+zx)=x^2(y+z)+xyz+y^2(x+z)+xyz+z^2(x+y)+xyz=x^2(y+z)+y^2(x+z)+z^2(x+y)+3*8
x^2(y+z)+y^2(x+z)+z^2(x+y)=74
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)=21*7-74=73
x²y²+y²z²+z²x²=(xy+yz+zx)^2-2(x+y+z)xyz=14^2-2*7*8=84
(x+y)(y+z)(z+x)=2xyz+x^2(y+z)+y^2(x+z)+z^2(x+y)=16+74=90
2、也可以按照下面的思路
x²+y²+z²=(x+y+z)^2-2(xy+yz+zx)=49-28=21.
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)
98=(x+y+z)(xy+yz+zx)=x^2(y+z)+xyz+y^2(x+z)+xyz+z^2(x+y)+xyz=x^2(y+z)+y^2(x+z)+z^2(x+y)+3*8
x^2(y+z)+y^2(x+z)+z^2(x+y)=74
x³+y³+z³=(x²+y²+z²)(x+y+z)-x(y²+z²)-y(x²+z²)-z(x²+y²)=21*7-74=73
x²y²+y²z²+z²x²=(xy+yz+zx)^2-2(x+y+z)xyz=14^2-2*7*8=84
(x+y)(y+z)(z+x)=2xyz+x^2(y+z)+y^2(x+z)+z^2(x+y)=16+74=90
看了 已知x+y+z=7,xy+y...的网友还看了以下:
matlab中怎么求解多元非线性方程组,请高手给一个例子,和全部的求解命令,比如:u2=x^2*y 2020-05-16 …
关于曲面积分的疑问∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2 2020-05-16 …
设x、y、z为实数,且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+ 2020-06-12 …
X/(Y+Z)+Y/(X+Z)+Z/(X+Y)=1,求X^2/(Y+Z)+Y^2/(X+Z)+Z^ 2020-06-12 …
求平面方程求过直线(x+2*y+z-1=0,x-y-2*z+3=0)的平面,使之平行于曲线(X^2 2020-07-31 …
1..设x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x*2/a*2+y*2/b*2+z 2020-10-30 …
(a+b+c)/3大于等于3*√abc设a=x^3,b=y^3,c=z^3x,y,z是非负数时x^3 2020-11-01 …
由(x^2+y^2+z^2)*(x+y+z)=x^3+y^3+z^3+(x+y)z^2+(y+z)x 2020-11-01 …
下列各式中,与(x-y+z)(x+y-z)相等的是()A.x^2-y^2-z^2B.-(x+y+z) 2020-11-01 …
对称式的问题1.证明:3个变数多项式f(x,y,z)=x(y-z)^2+y(z-x)^2+z(x-y 2020-11-07 …