早教吧作业答案频道 -->数学-->
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n大于等于2,q不=0)
题目详情
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n大于等于2,q不=0)
▼优质解答
答案和解析
是这题吗?
(1)a(n+1)=(1+q)an-qa(n-1)
a(n+1)=an+qan-qa(n-1)
a(n+1)-an=qan-qa(n-1)
[a(n+1)-an]/[an-a(n-1)]=q
因为bn=a(n+1)-an
所以bn/b(n-1)=q
所以bn是以q为公比的等比数列
bn=(a2-a1)*q^(n-1)
bn=q^(n-1)
(2)a(n+1)-an=q^(n-1)
a(n+1)-an=q^(n-1)
an-a(n-1)=q^(n-2)
.
a3-a2=q^1
a2-a1=q^0
以上等式相加得
a(n+1)-a1=q^(n-1)+q^(n-2)+.+q^1+q^0
a(n+1)-a1=(1-q^n)/(1-q)q≠0
a(n+1)-1=(1-q^n)/(1-q)
a(n+1)=(1-q^n)/(1-q)+1
a(n+1)={1-q^[(n+1)-1}/(1-q)+1
an={1-q^(n-1)}/(1-q)+1(q≠1)
an=n(q=1)
(1)a(n+1)=(1+q)an-qa(n-1)
a(n+1)=an+qan-qa(n-1)
a(n+1)-an=qan-qa(n-1)
[a(n+1)-an]/[an-a(n-1)]=q
因为bn=a(n+1)-an
所以bn/b(n-1)=q
所以bn是以q为公比的等比数列
bn=(a2-a1)*q^(n-1)
bn=q^(n-1)
(2)a(n+1)-an=q^(n-1)
a(n+1)-an=q^(n-1)
an-a(n-1)=q^(n-2)
.
a3-a2=q^1
a2-a1=q^0
以上等式相加得
a(n+1)-a1=q^(n-1)+q^(n-2)+.+q^1+q^0
a(n+1)-a1=(1-q^n)/(1-q)q≠0
a(n+1)-1=(1-q^n)/(1-q)
a(n+1)=(1-q^n)/(1-q)+1
a(n+1)={1-q^[(n+1)-1}/(1-q)+1
an={1-q^(n-1)}/(1-q)+1(q≠1)
an=n(q=1)
看了 在数列{an}中,a1=1,...的网友还看了以下:
已知圆x平方+y平方+x-6y+m=0和直线x+2y-3=0交于P,Q两点 且OP⊥OQ(O为坐已 2020-05-13 …
下列程序段的输出结果是B.int*p,*q,k=1,j=10;p=&j;q=&k;p=q;(*p) 2020-05-14 …
如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上 2020-06-15 …
如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点,直线PQ与直线 2020-06-29 …
(1)将3p%的硫酸与同体积的p%的硫酸混合得到q%的稀硫酸,则p、q的关系正确的是(填序号,下同 2020-07-29 …
设命题p和命题q,“p∨q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假 2020-08-01 …
已知:如图,圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点 2020-08-01 …
(2014•安庆三模)在直角坐标系xOy中,点p是单位圆上位于第一象限的动点,过p作x轴的垂线与射线 2020-11-12 …
已知集合A是函数y=lg(20+8x-x^2)的定义域,p:x属于A,q:(x-1+a)(x-1-a 2020-12-07 …
对于命题p和命题q,若p真q假,则命题p∧q和命题p∨q的真假为()A.p∧q和p∨q都为真B.p∧ 2020-12-13 …