早教吧作业答案频道 -->数学-->
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n大于等于2,q不=0)
题目详情
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n大于等于2,q不=0)
▼优质解答
答案和解析
是这题吗?
(1)a(n+1)=(1+q)an-qa(n-1)
a(n+1)=an+qan-qa(n-1)
a(n+1)-an=qan-qa(n-1)
[a(n+1)-an]/[an-a(n-1)]=q
因为bn=a(n+1)-an
所以bn/b(n-1)=q
所以bn是以q为公比的等比数列
bn=(a2-a1)*q^(n-1)
bn=q^(n-1)
(2)a(n+1)-an=q^(n-1)
a(n+1)-an=q^(n-1)
an-a(n-1)=q^(n-2)
.
a3-a2=q^1
a2-a1=q^0
以上等式相加得
a(n+1)-a1=q^(n-1)+q^(n-2)+.+q^1+q^0
a(n+1)-a1=(1-q^n)/(1-q)q≠0
a(n+1)-1=(1-q^n)/(1-q)
a(n+1)=(1-q^n)/(1-q)+1
a(n+1)={1-q^[(n+1)-1}/(1-q)+1
an={1-q^(n-1)}/(1-q)+1(q≠1)
an=n(q=1)
(1)a(n+1)=(1+q)an-qa(n-1)
a(n+1)=an+qan-qa(n-1)
a(n+1)-an=qan-qa(n-1)
[a(n+1)-an]/[an-a(n-1)]=q
因为bn=a(n+1)-an
所以bn/b(n-1)=q
所以bn是以q为公比的等比数列
bn=(a2-a1)*q^(n-1)
bn=q^(n-1)
(2)a(n+1)-an=q^(n-1)
a(n+1)-an=q^(n-1)
an-a(n-1)=q^(n-2)
.
a3-a2=q^1
a2-a1=q^0
以上等式相加得
a(n+1)-a1=q^(n-1)+q^(n-2)+.+q^1+q^0
a(n+1)-a1=(1-q^n)/(1-q)q≠0
a(n+1)-1=(1-q^n)/(1-q)
a(n+1)=(1-q^n)/(1-q)+1
a(n+1)={1-q^[(n+1)-1}/(1-q)+1
an={1-q^(n-1)}/(1-q)+1(q≠1)
an=n(q=1)
看了 在数列{an}中,a1=1,...的网友还看了以下:
已知数列{An}满足A(n+1)=an+2*(3^n)+1,a1=3,求{An}原式得:An=A( 2020-05-13 …
急(n+1)an+12-nan2+an+1*an=0(n=1,2,)求an说明:an、an+1是角 2020-05-17 …
两种做法感觉都对,好纠结数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n∈N+). 2020-06-17 …
急数列{an}中,an+1=-an^2+2an,a1=t(t>0),且{an}是有界数列,求实数t 2020-06-23 …
数列{an}中,a1=6且an-an-1=an-1/n+n+1(n>=2)则这个数列的通项公式是要 2020-07-09 …
本问题分为如下两步:1、给出形如A(n+1)=pAn^2+qAn的递推公式和A1的值,求通项.例如 2020-08-01 …
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n设bn=an/n,求证b 2020-08-02 …
无穷数列an中,a1=1,an=√(an-1)^2+4,(n>=2,n属于N*)已知数列{an}中 2020-08-02 …
已知数列{an}满足a1=1,(a(n-1)+1)/an=(a(n-1)+1)/(1-an),(n∈ 2020-11-19 …
已知数列{an}中,a1=1/2点(n,2a(n+1)-an)在直线y=x上其中n=1,2,3,4, 2020-12-24 …