早教吧作业答案频道 -->数学-->
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明
题目详情
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
▼优质解答
答案和解析
(Ⅰ)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.
又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.
(Ⅱ)由(Ⅰ)a2-a1=1,a3-a2=q,
…
an-an-1=qn-2,(n≥2).
将以上各式相加,得an-a1=1+q+…+qn-2(n≥2).
所以当n≥2时,an=
上式对n=1显然成立.
(Ⅲ)由(Ⅱ),当q=1时,显然a3不是a6与a9的等差中项,故q≠1.
由a3-a6=a9-a3可得q5-q2=q2-q8,由q≠0得q3-1=1-q6,①
整理得(q3)2+q3-2=0,解得q3=-2或q3=1(舍去).于是q=−
.
另一方面,an−an+3=
=
(q3−1),an+6−an=
=
(1−q6).
由①可得an-an+3=an+6-an,n∈N*.
所以对任意的n∈N*,an是an+3与an+6的等差中项.
又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.
(Ⅱ)由(Ⅰ)a2-a1=1,a3-a2=q,
…
an-an-1=qn-2,(n≥2).
将以上各式相加,得an-a1=1+q+…+qn-2(n≥2).
所以当n≥2时,an=
|
上式对n=1显然成立.
(Ⅲ)由(Ⅱ),当q=1时,显然a3不是a6与a9的等差中项,故q≠1.
由a3-a6=a9-a3可得q5-q2=q2-q8,由q≠0得q3-1=1-q6,①
整理得(q3)2+q3-2=0,解得q3=-2或q3=1(舍去).于是q=−
3 | 2 |
另一方面,an−an+3=
qn+2−qn−1 |
1−q |
qn−1 |
1−q |
qn−1−qn+5 |
1−q |
qn−1 |
1−q |
由①可得an-an+3=an+6-an,n∈N*.
所以对任意的n∈N*,an是an+3与an+6的等差中项.
看了 在数列{an}中,a1=1,...的网友还看了以下:
已知a/b=c/d,求证b-a/b=d-c/d别复制. 2020-04-05 …
已知a>0,b>0,求证b²÷a+a²÷b>=a+b 2020-05-15 …
用柯西不等式证明:已知a、b>0求证 b/a²+a/b²≥1/a+1/b 2020-05-15 …
帮忙解决一个有关球壳的电场的问题有关带电球壳的场强问题,有一带电球壳,内外半径分别为a,b,电荷体 2020-05-16 …
设f(x)=ax²+bx+c(a,b,c∈R,a≠0)f(x)在区间[-2,2]上的最大值最小值分 2020-06-02 …
已知A=a+2.B=a^2-a+5.C=a^2+5a-19.求证B-A>0 2020-06-12 …
设a,b,c,d都是不等于0的实数,求证|b/a|+|b/c|+|c/d|+|d/a|>=4 2020-07-15 …
已知a,b,c为正实数,求证b/a^2+c/b^2+a/c^2>=1/a+1/b+1/c 2020-07-30 …
已知a,b∈R,a>b>e(其中e是自然对数的底数),求证:b^a>a^b. 2020-08-02 …
证明反比性质和更比性质1.如果a/b=c/d,求证b/a=d/c.2.如果a/b=c/d,求证a/c 2020-10-30 …