早教吧作业答案频道 -->数学-->
已知函数f(x)满足f(1)=a且f(n+1)=﹛(f(n)-1)/f(n)f(n)>1﹛2f(n),f(n)≤9已知函数f(x)满足f(1)=a且f(n+1)=﹛(f(n)-1)/f(n)f(n)>1﹛2f(n),f(n)≤9,若对任意
题目详情
已知函数f(x)满足f(1)=a且f(n+1)=﹛(f(n)-1)/f(n) f(n)>1 ﹛2f(n),f(n)≤9
已知函数f(x)满足f(1)=a且f(n+1)=﹛(f(n)-1)/f(n) f(n)>1
﹛2f(n),f(n)≤9
,若对任意的x∈N+,总有f(n+3)=f(n)成立,则a在﹙0,1]内的可能值有多少个?
已知函数f(x)满足f(1)=a且f(n+1)=﹛(f(n)-1)/f(n) f(n)>1
﹛2f(n),f(n)≤9
,若对任意的x∈N+,总有f(n+3)=f(n)成立,则a在﹙0,1]内的可能值有多少个?
▼优质解答
答案和解析
分析:欲求出对任意的n∈N*总有f(n+3)=f(n)成立时a在(0,1]内的可能值,只须考虑n=1时,使得方程f(4)=f(1)的a在(0,1]内的可能值即可.对a进行分类讨论,结合分段函数的解析式列出方程求解即可.
∵0<a≤1,∴f(2)=2f(1)=2a,
①当0<a≤1/4时,0<2a≤1/2,0<4a≤1,
∴f(3)=2f(2)=4a,
f(4)=2f(3)=8a,
此时f(4)=f(1)不成立;
②当1/4<a≤1/2时,1/2<2a≤1,1<4a≤2,
∴f(3)=2f(2)=4a,
f(4)=[f(3)-1]/f(3)=﹙4a-1﹚/4a,
此时f(4)=f(1)⇔﹙4a-1﹚/4a=a⇔a=1/2;
③当1/2<a≤1时,1<2a≤2,2<4a≤4,
∴f(3)=[f(2)-1]/f(2)=(2a-1)/2a≤1/2,
∴f(4)=2f(3)=(2a-1)/a,
此时f(4)=f(1)⇔(2a-1)/a=a⇔a=1;
综上所述,当n=1时,有f(n+3)=f(n)成立时,
则a在(0,1]内的可能值有两个.
点评:本小题主要考查分段函数、函数恒成立问题、方程式的解法等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.
有疑问可以追问哦,.
∵0<a≤1,∴f(2)=2f(1)=2a,
①当0<a≤1/4时,0<2a≤1/2,0<4a≤1,
∴f(3)=2f(2)=4a,
f(4)=2f(3)=8a,
此时f(4)=f(1)不成立;
②当1/4<a≤1/2时,1/2<2a≤1,1<4a≤2,
∴f(3)=2f(2)=4a,
f(4)=[f(3)-1]/f(3)=﹙4a-1﹚/4a,
此时f(4)=f(1)⇔﹙4a-1﹚/4a=a⇔a=1/2;
③当1/2<a≤1时,1<2a≤2,2<4a≤4,
∴f(3)=[f(2)-1]/f(2)=(2a-1)/2a≤1/2,
∴f(4)=2f(3)=(2a-1)/a,
此时f(4)=f(1)⇔(2a-1)/a=a⇔a=1;
综上所述,当n=1时,有f(n+3)=f(n)成立时,
则a在(0,1]内的可能值有两个.
点评:本小题主要考查分段函数、函数恒成立问题、方程式的解法等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.
有疑问可以追问哦,.
看了 已知函数f(x)满足f(1)...的网友还看了以下:
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
函数f(n)是定义在N上的函数,f(n)属于Z,且是严格递增的,当m与n互质,有f(m)f(n)= 2020-05-17 …
已知函数y=f(n),f(0)=2,且满足f(n)=f(n-1)/(n+1),n属于N+,求f(1 2020-06-02 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知f(n)=-n,φ(n)=,g(n)=n-,n∈N+,则[]A.f(n)<g(n)<φ(n)B 2020-07-13 …
1.设f(n)>0(n∈N*),f(2)=4,并且对于任意n1,n2∈N*,f(n1+n2)=f( 2020-07-22 …
已知Fibonacci数列定义如下:F(1)=1F(2)=1F(n)=f(n-1)+f(n-2)( 2020-07-23 …
已知Fibonacci数列定义如下:F(1)=1F(2)=1F(n)=f(n-1)+f(n-2)( 2020-07-23 …
1、已知f(n)=f(n-1)+a^n(n属于自然数,且n大于等于2),f(1)=1,则f(n)= 2020-08-02 …