早教吧作业答案频道 -->数学-->
已知f(x)是定义在R上的增函数,对x∈R有f(x)>0,且f(5)=1,设F(x)=f(x)+1f(x),讨论F(x)的单调性,并证明你的结论.
题目详情
已知f(x)是定义在R上的增函数,对x∈R有f(x)>0,且f(5)=1,设F(x)=f(x)+
,讨论F (x)的单调性,并证明你的结论.
1 |
f(x) |
▼优质解答
答案和解析
在R上任取x1、x2,设x1<x2,
∴f(x2)>f(x1),
F(x2)−F(x2)=[f(x2)+
]−[f(x1)+
]
=[f(x2) −f(x1) ][1−
]
∵f(x)是R上的增函数,且f(5)=1,
∴当x<5时0<f(x)<1,而当x>5时f(x)>1;
①若x1<x2<5,则0<f(x1)<f(x2)<1,
∴1−
<0,
∴F(x2)<F(x1);
②若x2>x1>5,则f(x2)>f(x1)>1,
∴f(x1)f(x2)>1
∴1−
>0
∴F(x2)>F(x1)
综上,F(x)在(-∞,5)为减函数,在(5,+∞)为增函数
∴f(x2)>f(x1),
F(x2)−F(x2)=[f(x2)+
1 |
f(x2) |
1 |
f(x1) |
=[f(x2) −f(x1) ][1−
1 |
f(x1) f(x2) |
∵f(x)是R上的增函数,且f(5)=1,
∴当x<5时0<f(x)<1,而当x>5时f(x)>1;
①若x1<x2<5,则0<f(x1)<f(x2)<1,
∴1−
1 |
f(x1) f(x2) |
∴F(x2)<F(x1);
②若x2>x1>5,则f(x2)>f(x1)>1,
∴f(x1)f(x2)>1
∴1−
1 |
f(x1)f(x2) |
∴F(x2)>F(x1)
综上,F(x)在(-∞,5)为减函数,在(5,+∞)为增函数
看了 已知f(x)是定义在R上的增...的网友还看了以下:
若函数f(x)=ax+1/X(a属于R),则下列结论正确的是?A:任意a∈R,f(x)在(0,+∞ 2020-04-27 …
定义运算r:r(xn)=nxn-1,r(c)=0,r(cx)=cr(x)(c为常数),r(x+y) 2020-05-13 …
matlab matlabc=40r=120a=96o=20y=3(角度)f=0.2[x]=sol 2020-05-16 …
导函数单调区间已知f(x)=x^3 ax^2 x 1,a属于R.讨论函数f(x)的单调区间已知f( 2020-05-16 …
为什么万有引力定律是F=mMG/r²,根据F正比于M/r²,F‘正比于m/r²,则F=k1M/r² 2020-05-22 …
已知定义域为R的函数f(x)不是奇函数,则下列命题一定为真命题的是A任意x∈R,f(-x)≠-f( 2020-06-09 …
定义在(-1,1)上的函数f(x)-f(y)=f((x-y)/(1-xy)),当X∈(-1,0), 2020-06-09 …
高数有关旋度的计算向量r=(x,y,z)|向量r|=r,f(r)具有二阶连续导数,C为常向量,证: 2020-07-07 …
离散数学中环算几条边K4有几边几面构造下面推理证明(1)前提:┑(p∧q),┑q∧r,┑r结论:┑ 2020-07-30 …
几何画板中的一些函数,y=f(x),x=f(y),r=f(θ),θ=f(r)y=f(x)我知道r=f 2020-12-08 …