早教吧作业答案频道 -->其他-->
(2012•温州)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB
题目详情
(2012•温州)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)当m=3时,y=-x2+6x
令y=0得-x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
当x=1时,y=5
∴B(1,5)
∵抛物线y=-x2+6x的对称轴为直线x=3
又∵B,C关于对称轴对称
∴BC=4.
(2)连接AC,过点C作CH⊥x轴于点H(如图1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴
=
,
∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,
又∵B,C关于对称轴对称,
∴BC=2(m-1),
∵B(1,2m-1),P(1,m),
∴BP=m-1,
又∵A(2m,0),C(2m-1,2m-1),
∴H(2m-1,0),
∴AH=1,CH=2m-1,
∴
=
,
∴m=
.
(3)∵B,C不重合,∴m≠1,
(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,
(i)若点E在x轴上(如图1),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
,
∴△BPC≌△MEP,
∴BC=PM,
∴2(m-1)=m,
∴m=2,此时点E的坐标是(2,0);
(ii)若点E在y轴上(如图2),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴m-1=1,
∴m=2,
此时点E的坐标是(0,4);
(II)当0<m<1时,BC=2(1-m),PM=m,BP=1-m,
(i)若点E在x轴上(如图3),
易证△BPC≌△MEP,
∴BC=PM,
∴2(1-m)=m,
∴m=
,此时点E的坐标是(
,0);
(ii)若点E在y轴上(如图4),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴1-m=1,∴m=0(舍去),
综上所述,当m=2时,点E的坐标是(2,0)或(0,4),
当m=
时,点E的坐标是(
,0).
令y=0得-x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
当x=1时,y=5
∴B(1,5)
∵抛物线y=-x2+6x的对称轴为直线x=3
又∵B,C关于对称轴对称
∴BC=4.
(2)连接AC,过点C作CH⊥x轴于点H(如图1)

由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴
| AH |
| CH |
| PB |
| BC |
∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,
又∵B,C关于对称轴对称,
∴BC=2(m-1),
∵B(1,2m-1),P(1,m),
∴BP=m-1,
又∵A(2m,0),C(2m-1,2m-1),
∴H(2m-1,0),
∴AH=1,CH=2m-1,
∴
| 1 |
| 2m−1 |
| m−1 |
| 2(m−1) |
∴m=
| 3 |
| 2 |
(3)∵B,C不重合,∴m≠1,
(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,
(i)若点E在x轴上(如图1),
∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
|
∴△BPC≌△MEP,
∴BC=PM,
∴2(m-1)=m,
∴m=2,此时点E的坐标是(2,0);
(ii)若点E在y轴上(如图2),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴m-1=1,
∴m=2,
此时点E的坐标是(0,4);
(II)当0<m<1时,BC=2(1-m),PM=m,BP=1-m,
(i)若点E在x轴上(如图3),
易证△BPC≌△MEP,
∴BC=PM,

∴2(1-m)=m,
∴m=
| 2 |
| 3 |
| 4 |
| 3 |
(ii)若点E在y轴上(如图4),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴1-m=1,∴m=0(舍去),
综上所述,当m=2时,点E的坐标是(2,0)或(0,4),
当m=
| 2 |
| 3 |
| 4 |
| 3 |
看了 (2012•温州)如图,经过...的网友还看了以下:
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b 与x轴交于P(-2, 2020-05-13 …
数学题,如图,抛物线y=(x+1)2+k与y轴交于A,B两点,与y轴交于点C(0,-3)如图,抛物 2020-05-13 …
如图,抛物线与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x如图,抛物 2020-05-15 …
如图,抛物线y=ax2+bx+c(a<0)与x轴相交于A、B两点,与y轴的正半轴相交于点C,对称轴 2020-05-15 …
已知椭圆x^2/a^2+y^2/b^2=1上任意一点M(除短轴端点外)与短轴两点B1,B2的连线分 2020-05-20 …
写出过点P(3,1),且分别满足下列条件的直线L的方程1、直线L垂直与X轴2、直线L垂直与Y轴3、 2020-06-23 …
已知抛物线y=ax^2+2x+c的图像与x轴交于点A(3,0)和点c,与y轴交于点B(0,3)已知 2020-07-09 …
如图抛物线y=1/4x^2+bx+c与x轴交于A(-2,0)如图抛物线y=1/4x^2+bx+c与 2020-07-29 …
已知两次函数y=x^2-(m^2+4)x-2m^2-12(1)求证不论M取何值,二次函数图像与X轴2 2020-11-27 …
1.直线x=5与x轴的交点坐标是(),它与y轴(),与y轴相距()个单位长度,与x轴().2.直线y 2021-01-11 …