早教吧作业答案频道 -->数学-->
如图,抛物线与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x如图,抛物线y=ax^2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对
题目详情
如图,抛物线与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x
如图,抛物线y=ax^2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数关系式.
(2)经过C,M两点作直线,与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.

如图,抛物线y=ax^2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数关系式.
(2)经过C,M两点作直线,与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.

▼优质解答
答案和解析
(1)对称轴是直线x=1,
-b/2a=1
经过点(2,-3a)
4a+2b-3=-3a
解得:a=1,b=-2
y=x^2-2x-3
(2)当y=0时,x^2-2x-3=0
(x+1)(x-3)=0
x1=-1,x2=3
A(-1,0),B(3,0)
当x=0时,y=-3
C(0,-3)
当x=1时,y=-4
M(1,-4)
直线CM:y=kx+h
-3=h
-4=k+h
k=-1,h=-3
直线CM:y=-x-3
当y=0时,x=-3
N(-3,0)
若在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形
则PC//AN,点P的纵坐标是-3
-3=x^2-2x-3
x(x-2)=0
x1=0,x2=2
则P(2,-3)
直线CN的斜率是(-3-0)/[0-(-3)]=-1
直线PA的斜率是(-3-0)/[2-(-1)]=-1
PA//CN
四边形PANC是平行四边形
存在这样的点P,点P的坐标是(2,-3)
(3)y=-x+3
令x=0
则y=3
D(0,3)
∠CBD是直角,EF过圆心G,EF是圆的直径
所以∠EAF也是直角,△AEF是直角三角形
-b/2a=1
经过点(2,-3a)
4a+2b-3=-3a
解得:a=1,b=-2
y=x^2-2x-3
(2)当y=0时,x^2-2x-3=0
(x+1)(x-3)=0
x1=-1,x2=3
A(-1,0),B(3,0)
当x=0时,y=-3
C(0,-3)
当x=1时,y=-4
M(1,-4)
直线CM:y=kx+h
-3=h
-4=k+h
k=-1,h=-3
直线CM:y=-x-3
当y=0时,x=-3
N(-3,0)
若在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形
则PC//AN,点P的纵坐标是-3
-3=x^2-2x-3
x(x-2)=0
x1=0,x2=2
则P(2,-3)
直线CN的斜率是(-3-0)/[0-(-3)]=-1
直线PA的斜率是(-3-0)/[2-(-1)]=-1
PA//CN
四边形PANC是平行四边形
存在这样的点P,点P的坐标是(2,-3)
(3)y=-x+3
令x=0
则y=3
D(0,3)
∠CBD是直角,EF过圆心G,EF是圆的直径
所以∠EAF也是直角,△AEF是直角三角形
看了 如图,抛物线与x轴交于A,B...的网友还看了以下:
设A是正交矩阵,特征值是1,-1,对应的特征向量是a,b,求a,b是否相关;a,b是否正交 2020-05-14 …
抛物线y=-x2+2x+3与x轴相交于a,b两点,点a在b的左边,与y轴相交于点c,抛物线顶点为d 2020-05-16 …
如图,抛物线y=-x2+x+2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.( 2020-07-18 …
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则 2020-07-22 …
高中数学问题A∩B=B∩A是集合A交集合B等于集合B交集合A的意思吗,还有别的意思吗A∪B=B∪A 2020-08-02 …
现有两个小麦品种A和B。如果想获得具有A品种细胞质和B品种细胞核的新个体要采取:A.A×B的后代连续 2020-10-30 …
规定a*b=,那么A.*是可交换和结合的B.*是可交换,但不可结合C.*是不可交换,但可结合D.*是 2020-11-03 …
水痘是春季常见的、传染性极强的一种传染病,由带状疱疹病毒引起的.症状是中低等发热,很快成批出现红色斑 2020-11-23 …
已知抛物线y=ax2+(2-a)x-2(a>0)的图象与x轴交于A、B两点(点A在点B的右侧),与y 2020-12-23 …
如图所示,已知抛物线y=x平方-1与x轴交与A,B俩点,与y轴交与点C.2011-01-041如图所 2021-01-10 …