早教吧作业答案频道 -->数学-->
(2009•上海)已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列.(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?说明理由;(2)找出所有数列{an}和{bn},使对一切n∈N*,an+1an=bn,并
题目详情
(2009•上海)已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列.
(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?说明理由;
(2)找出所有数列{an}和{bn},使对一切n∈N*,
=bn,并说明理由;
(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{an}中存在某个连续p项的和是数列{bn}中的一项,请证明.
(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?说明理由;
(2)找出所有数列{an}和{bn},使对一切n∈N*,
| an+1 |
| an |
(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{an}中存在某个连续p项的和是数列{bn}中的一项,请证明.
▼优质解答
答案和解析
(1)由am+am+1=ak,得6m+5=3k+1,
整理后,可得k−2m=
,∵m、k∈N*,∴k-2m为整数,
∴不存在m、k∈N*,使等式成立.
(2)设an=nd+c,若
=bn,对n∈N×都成立,
且{bn}为等比数列,则
/
=q,对n∈N×都成立,
即anan+2=qan+12,∴(dn+c)(dn+2d+c)=q(dn+d+c)2,
对n∈N×都成立,∴d2=qd2
(i)若d=0,则an=c≠0,∴bn=1,n∈N*.
(ii)若d≠0,则q=1,∴bn=m(常数),即
=m,则d=0,矛盾.
综上所述,有an=c≠0,bn=1,使对一切n∈N×,
=bn.
(3)an=4n+1,bn=3n,n∈N*,
设am+1+am+2++am+p=bk=3k,p、k∈N*,m∈N.
p=3k,
∴4m+2p+3=
,
∵p、k∈N*,∴p=3s,s∈N
取k=3s+2,4m=32s+2-2×3s-3=(4-1)2s+2-2×(4-1)s-3≥0,由
二项展开式可得整数M1、M2,
使得(4-1)2s+2=4M1+1,2×(4-1)s=8M2+(-1)S2
∴4m=4(M1-2M2)-((-1)S+1)2,
∴存在整数m满足要求.
故当且仅当p=3s,s∈N,命题成立.
整理后,可得k−2m=
| 4 |
| 3 |
∴不存在m、k∈N*,使等式成立.
(2)设an=nd+c,若
| an+1 |
| an |
且{bn}为等比数列,则
| an+2 |
| an+1 |
| an+1 |
| an |
即anan+2=qan+12,∴(dn+c)(dn+2d+c)=q(dn+d+c)2,
对n∈N×都成立,∴d2=qd2
(i)若d=0,则an=c≠0,∴bn=1,n∈N*.
(ii)若d≠0,则q=1,∴bn=m(常数),即
| dn+d+c |
| dn+c |
综上所述,有an=c≠0,bn=1,使对一切n∈N×,
| an+1 |
| an |
(3)an=4n+1,bn=3n,n∈N*,
设am+1+am+2++am+p=bk=3k,p、k∈N*,m∈N.
| 4(m+1)+1+4(m+p)+1 |
| 2 |
∴4m+2p+3=
| 3k |
| p |
∵p、k∈N*,∴p=3s,s∈N
取k=3s+2,4m=32s+2-2×3s-3=(4-1)2s+2-2×(4-1)s-3≥0,由
二项展开式可得整数M1、M2,
使得(4-1)2s+2=4M1+1,2×(4-1)s=8M2+(-1)S2
∴4m=4(M1-2M2)-((-1)S+1)2,
∴存在整数m满足要求.
故当且仅当p=3s,s∈N,命题成立.
看了 (2009•上海)已知{an...的网友还看了以下:
1.已知数列{an}中,a(1)=1,a(2)=6,a(n+2)=a(n+1)-a(n),则a(2 2020-05-14 …
已知函数f(x)=2x+3/3x,数列{an}满足a₁=1,an+1=f(1/an),n∈N+⑴求 2020-06-07 …
两种做法感觉都对,好纠结数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n∈N+). 2020-06-17 …
用辅助数列法解等差数列题也就是要用递推公式推出来,用辅助数列法1、已知数列{an}的首项a(1)= 2020-08-01 …
已知数列{an}满足递推式a(n+1)-2/an=an-2/a(n-1).a1=1.a2=3若bn 2020-08-01 …
已知数列{an}中,a(1)=1,a(2)=2,2a(n+2)=a(n+1)+a(n)求证a(2n 2020-08-01 …
无穷数列an中,a1=1,an=√(an-1)^2+4,(n>=2,n属于N*)已知数列{an}中 2020-08-02 …
(2009•闵行区一模)已知无穷数列{an},其前n项和为Sn,且an=(a+1)Sn+2(a≠0 2020-08-02 …
有关等差数列,1、已知数列{an}的首项a(1)=1,且an=2a(n-1)+1n>=2,则a(5) 2020-12-07 …
已知数列{an}中,a1=1/2点(n,2a(n+1)-an)在直线y=x上其中n=1,2,3,4, 2020-12-24 …