早教吧作业答案频道 -->数学-->
证明:对任意正整数n,5分之n的5次方+3分之n的3次方+15分之7n是整数
题目详情
证明:对任意正整数n,5分之n的5次方+3分之n的3次方+15分之7n是整数
▼优质解答
答案和解析
N=1/5*n^5+1/3*n^3+7/15*n
=1/15*(3n^5+5n^3+7n)
=1/15*n(3n^4+5n^2+7)
=1/15*n(3n^4-10n^2+7+15n^2)
=n/15*[(3n^2-7)(n^2-1)+15n^2]
=(n-1)n(n+1)(3n^2-7)/15+n^3
因为(n-1),n,(n+1)是3个连续的自然数,一定有个是3的倍数.
如果(n-1),n,(n+1)里有5的因子,则(n-1)n(n+1)是15的倍数,得证.
如果(n-1),n,(n+1)里没有5的因子,
则只能是n=5k+2,n=5k+3.(k是自然数)
n=5k+2时,
3n^2-7=3(5k+2)^2-7=75k^2+60k+5,是5的倍数.
n=5k+3时,
3n^2-7=3(5k+3)^2-7=75k^2+90k+20,是5的倍数.
所以(n-1)n(n+1)(3n^2-7)是15的倍数.
=1/15*(3n^5+5n^3+7n)
=1/15*n(3n^4+5n^2+7)
=1/15*n(3n^4-10n^2+7+15n^2)
=n/15*[(3n^2-7)(n^2-1)+15n^2]
=(n-1)n(n+1)(3n^2-7)/15+n^3
因为(n-1),n,(n+1)是3个连续的自然数,一定有个是3的倍数.
如果(n-1),n,(n+1)里有5的因子,则(n-1)n(n+1)是15的倍数,得证.
如果(n-1),n,(n+1)里没有5的因子,
则只能是n=5k+2,n=5k+3.(k是自然数)
n=5k+2时,
3n^2-7=3(5k+2)^2-7=75k^2+60k+5,是5的倍数.
n=5k+3时,
3n^2-7=3(5k+3)^2-7=75k^2+90k+20,是5的倍数.
所以(n-1)n(n+1)(3n^2-7)是15的倍数.
看了 证明:对任意正整数n,5分之...的网友还看了以下:
当n取正整数时,定义N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4 2020-05-13 …
求解lim(n,+∞>1/n*(e^1/n+e^2/n+…+e^n/n)求详细解题过程谢谢求解li 2020-05-14 …
已知n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,用秦九韶算法求当x=x0时f 2020-06-29 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
(1/2)已知an=(1+根号下2)的n次方(n属于N*)若an=a+b根号下2(a.b属于Z)求 2020-07-30 …
下列各式正确的是A.(1/2)的n次方>(1/3)的n次方B.(-π)的2/3次方>(-2根号3) 2020-08-02 …
不等式2的n次方>n的平方(n为正整数)成立的条件,因此要用数学归纳法证明这个不等式,n取得第一个 2020-08-03 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …
已知函数F(X)=3X-2,X∈R,规定:给一个实数X.,赋值X1=F(X.),若X1≤244,则继 2020-12-31 …